These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34628189)

  • 1. Dynamic fatigue of 3D-printed splint materials.
    Wulff J; Schmid A; Huber C; Rosentritt M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104885. PubMed ID: 34628189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity of printed resin-based splint materials.
    Wulff J; Schweikl H; Rosentritt M
    J Dent; 2022 May; 120():104097. PubMed ID: 35331812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study.
    Simeon P; Unkovskiy A; Saadat Sarmadi B; Nicic R; Koch PJ; Beuer F; Schmidt F
    J Mech Behav Biomed Mater; 2024 Apr; 152():106458. PubMed ID: 38364445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material.
    Perea-Lowery L; Gibreel M; Vallittu PK; Lassila L
    J Mech Behav Biomed Mater; 2021 Mar; 115():104254. PubMed ID: 33333480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pull-Off Behavior of Hand-Cast, Thermoformed, Milled, and 3D-Printed Splints.
    Hickl V; Strasser T; Schmid A; Rosentritt M
    Int J Prosthodont; 2024 Feb; 37(7):31-40. PubMed ID: 38489218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3D printing system and post-curing atmosphere on micro- and nano-wear of additive-manufactured occlusal splint materials.
    Wada J; Wada K; Garoushi S; Shinya A; Wakabayashi N; Iwamoto T; Vallittu PK; Lassila L
    J Mech Behav Biomed Mater; 2023 Jun; 142():105799. PubMed ID: 37028121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of layer thickness and polishing on wear resistance of additively manufactured occlusal splints.
    Diken Türksayar AA; Diker B
    J Dent; 2024 Jul; 146():105101. PubMed ID: 38801940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of storage and toothbrush simulation on color, gloss, and roughness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials.
    Hickl V; Strasser T; Schmid A; Rosentritt M
    Clin Oral Investig; 2022 May; 26(5):4183-4194. PubMed ID: 35119536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biaxial Flexural Strength of Printed Splint Materials.
    Wulff J; Rauch A; Schmidt MB; Rosentritt M
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes.
    Grymak A; Waddell JN; Aarts JM; Ma S; Choi JJE
    J Mech Behav Biomed Mater; 2022 Feb; 126():105053. PubMed ID: 34998068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of storage and toothbrush simulation on Martens hardness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials.
    Rosentritt M; Hickl V; Rauch A; Schmidt M
    Clin Oral Investig; 2023 Dec; 27(12):7859-7869. PubMed ID: 37957307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot in-vitro study on insertion/removal performance of hand-cast, milled and 3D printed splints.
    Rosentritt M; Behr M; Strasser T; Schmid A
    J Mech Behav Biomed Mater; 2021 Sep; 121():104612. PubMed ID: 34077905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of hardness and polishability of various occlusal splint materials.
    Grymak A; Aarts JM; Ma S; Waddell JN; Choi JJE
    J Mech Behav Biomed Mater; 2021 Mar; 115():104270. PubMed ID: 33341739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of post-polymerization with autoclaving treatment on monomer elution and mechanical properties of 3D-printing acrylic resin for splint fabrication.
    Tangpothitham S; Pongprueksa P; Inokoshi M; Mitrirattanakul S
    J Mech Behav Biomed Mater; 2022 Feb; 126():105015. PubMed ID: 34896766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and physical properties of splint materials for oral appliances produced by additive, subtractive and conventional manufacturing.
    Maleki T; Meinen J; Coldea A; Reymus M; Edelhoff D; Stawarczyk B
    Dent Mater; 2024 Jun; ():. PubMed ID: 38851965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporary 3D printed fixed dental prosthesis materials: Impact of post printing cleaning methods on degree of conversion as well as surface and mechanical properties.
    Mayer J; Reymus M; Wiedenmann F; Edelhoff D; Hickel R; Stawarczyk B
    Int J Prosthodont; 2021; 34(6):784–795. PubMed ID: 33616559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices.
    Berli C; Thieringer FM; Sharma N; Müller JA; Dedem P; Fischer J; Rohr N
    J Prosthet Dent; 2020 Dec; 124(6):780-786. PubMed ID: 31955837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of flexible three-dimensionally printed occlusal splint materials: An in vitro study.
    Perea-Lowery L; Gibreel M; Garoushi S; Vallittu P; Lassila L
    Dent Mater; 2023 Oct; 39(10):957-963. PubMed ID: 37666693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-flexible resin for the 3D printing of occlusal splints: A randomized pilot trial.
    Herpel C; Kykal J; Rues S; Schwindling FS; Rammelsberg P; Eberhard L
    J Dent; 2023 Jun; 133():104514. PubMed ID: 37031885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface properties and initial bacterial biofilm growth on 3D-printed oral appliances: a comparative in vitro study.
    Wuersching SN; Westphal D; Stawarczyk B; Edelhoff D; Kollmuss M
    Clin Oral Investig; 2023 Jun; 27(6):2667-2677. PubMed ID: 36576565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.