BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34628539)

  • 1. Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons.
    Ter Wal M; Tiesinga PHE
    Biol Cybern; 2021 Oct; 115(5):487-517. PubMed ID: 34628539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers.
    Park K; Lee J; Jang HJ; Richards BA; Kohl MM; Kwag J
    BMC Biol; 2020 Jan; 18(1):7. PubMed ID: 31937327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers.
    Kuki T; Fujihara K; Miwa H; Tamamaki N; Yanagawa Y; Mushiake H
    Front Neural Circuits; 2015; 9():6. PubMed ID: 25691859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo.
    Chung H; Park K; Jang HJ; Kohl MM; Kwag J
    Brain Struct Funct; 2020 Apr; 225(3):935-954. PubMed ID: 32107637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations.
    Chen G; Zhang Y; Li X; Zhao X; Ye Q; Lin Y; Tao HW; Rasch MJ; Zhang X
    Neuron; 2017 Dec; 96(6):1403-1418.e6. PubMed ID: 29268099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Frequency Switching in Adult Mouse Visual Cortex Is Mediated by Competition Between Parvalbumin and Somatostatin Expressing Interneurons.
    Domhof JWM; Tiesinga PHE
    Neural Comput; 2021 Mar; 33(4):926-966. PubMed ID: 33513330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Coupled Firing of Prefrontal Parvalbumin Interneuron With High Frequency Oscillations.
    Yao Y; Wu M; Wang L; Lin L; Xu J
    Front Cell Neurosci; 2020; 14():610741. PubMed ID: 33324170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of specific cortical GABAergic circuits underlie abnormal network activity in a mouse model of Down syndrome.
    Zorrilla de San Martin J; Donato C; Peixoto J; Aguirre A; Choudhary V; De Stasi AM; Lourenço J; Potier MC; Bacci A
    Elife; 2020 Aug; 9():. PubMed ID: 32783810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability.
    Inan M; Zhao M; Manuszak M; Karakaya C; Rajadhyaksha AM; Pickel VM; Schwartz TH; Goldstein PA; Manfredi G
    Neurobiol Dis; 2016 Sep; 93():35-46. PubMed ID: 27105708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory.
    Kim D; Jeong H; Lee J; Ghim JW; Her ES; Lee SH; Jung MW
    Neuron; 2016 Nov; 92(4):902-915. PubMed ID: 27746132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing.
    Cottam JC; Smith SL; Häusser M
    J Neurosci; 2013 Dec; 33(50):19567-78. PubMed ID: 24336721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations.
    Hartwich K; Pollak T; Klausberger T
    J Neurosci; 2009 Jul; 29(30):9563-74. PubMed ID: 19641119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing interneuron circuits for compartment-specific feedback inhibition.
    Keijser J; Sprekeler H
    PLoS Comput Biol; 2022 Apr; 18(4):e1009933. PubMed ID: 35482670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network Asynchrony Underlying Increased Broadband Gamma Power.
    Guyon N; Zacharias LR; Fermino de Oliveira E; Kim H; Leite JP; Lopes-Aguiar C; Carlén M
    J Neurosci; 2021 Mar; 41(13):2944-2963. PubMed ID: 33593859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling fast and slow gamma oscillations with interneurons of different subtype.
    Keeley S; Fenton AA; Rinzel J
    J Neurophysiol; 2017 Mar; 117(3):950-965. PubMed ID: 27927782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.
    Hu H; Agmon A
    J Neurophysiol; 2015 Jul; 114(1):624-37. PubMed ID: 25972585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.