These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34629049)
1. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. Yoon H; Kim J; Lim HJ; Lee MJ BMC Med Imaging; 2021 Oct; 21(1):146. PubMed ID: 34629049 [TBL] [Abstract][Full Text] [Related]
2. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT. Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313 [TBL] [Abstract][Full Text] [Related]
3. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study. Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431 [No Abstract] [Full Text] [Related]
4. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Nam JG; Hong JH; Kim DS; Oh J; Goo JM Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354 [TBL] [Abstract][Full Text] [Related]
5. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501 [No Abstract] [Full Text] [Related]
6. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen. Thor D; Titternes R; Poludniowski G Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193 [TBL] [Abstract][Full Text] [Related]
7. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Gay F; Pavia Y; Pierrat N; Lasalle S; Neuenschwander S; Brisse HJ Eur Radiol; 2014 Jan; 24(1):102-11. PubMed ID: 23995879 [TBL] [Abstract][Full Text] [Related]
8. Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT. Tang H; Yu N; Jia Y; Yu Y; Duan H; Han D; Ma G; Ren C; He T Br J Radiol; 2018 Jan; 91(1081):20170521. PubMed ID: 29076347 [TBL] [Abstract][Full Text] [Related]
9. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405 [TBL] [Abstract][Full Text] [Related]
10. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection. Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867 [TBL] [Abstract][Full Text] [Related]
11. Can 1.25 mm thin-section images generated with Deep Learning Image Reconstruction technique replace standard-of-care 5 mm images in abdominal CT? Cao J; Mroueh N; Pisuchpen N; Parakh A; Lennartz S; Pierce TT; Kambadakone AR Abdom Radiol (NY); 2023 Oct; 48(10):3253-3264. PubMed ID: 37369922 [TBL] [Abstract][Full Text] [Related]
12. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790 [TBL] [Abstract][Full Text] [Related]
13. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH; Yoon HJ; Lee E; Kim I; Cha YK; Bak SH Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [TBL] [Abstract][Full Text] [Related]
14. Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience. Jensen CT; Liu X; Tamm EP; Chandler AG; Sun J; Morani AC; Javadi S; Wagner-Bartak NA AJR Am J Roentgenol; 2020 Jul; 215(1):50-57. PubMed ID: 32286872 [No Abstract] [Full Text] [Related]
16. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Hata A; Yanagawa M; Yoshida Y; Miyata T; Kikuchi N; Honda O; Tomiyama N Clin Radiol; 2021 Feb; 76(2):155.e15-155.e23. PubMed ID: 33220941 [TBL] [Abstract][Full Text] [Related]
17. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. Bie Y; Yang S; Li X; Zhao K; Zhang C; Zhong H J Xray Sci Technol; 2022; 30(3):409-418. PubMed ID: 35124575 [TBL] [Abstract][Full Text] [Related]
19. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V). Li Y; Liu X; Zhuang XH; Wang MJ; Song XF BMC Med Imaging; 2022 Jun; 22(1):106. PubMed ID: 35658908 [TBL] [Abstract][Full Text] [Related]
20. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]