These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34629515)

  • 21. Extraction Process Optimization of Curcumin from
    Sutarsi ; Jati PT; Wiradiestia D; Altway A; Winardi S; Wahyudiono ; Machmudah S
    ACS Omega; 2024 Jan; 9(1):1251-1264. PubMed ID: 38239285
    [No Abstract]   [Full Text] [Related]  

  • 22. Optimization Studies and Compositional Oil Analysis of Pequi (
    Mateus LS; Dutra JM; Favareto R; da Silva EA; Ferreira Pinto L; da Silva C; Cardozo-Filho L
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770696
    [No Abstract]   [Full Text] [Related]  

  • 23. Spent Coffee Grounds Valorization in Biorefinery Context to Obtain Valuable Products Using Different Extraction Approaches and Solvents.
    Lauberts M; Mierina I; Pals M; Latheef MAA; Shishkin A
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response Surface Methodology to Optimize Supercritical Carbon Dioxide Extraction of Polygonum cuspidatum.
    Ruan N; Jiao Z; Tang L
    J AOAC Int; 2022 Feb; 105(1):272-281. PubMed ID: 34410415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp.
    Maran JP; Priya B; Manikandan S
    J Food Sci Technol; 2014 Sep; 51(9):1938-46. PubMed ID: 25190849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extraction of corn germ oil with supercritical CO
    Marinho CM; Lemos COT; Arvelos S; de Souza Barrozo MA; Hori CE; Watanabe ÉO
    J Food Sci Technol; 2019 Oct; 56(10):4448-4456. PubMed ID: 31686676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.
    Andrade KS; Gonçalvez RT; Maraschin M; Ribeiro-do-Valle RM; Martínez J; Ferreira SR
    Talanta; 2012 Jan; 88():544-52. PubMed ID: 22265539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Extraction of lobetyolin from codonopsis with supercritical CO2].
    Liu T; Li S; Min J; Bao X
    Zhongguo Zhong Yao Za Zhi; 2009 Mar; 34(5):560-3. PubMed ID: 19526782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercritical extraction of sunflower oil: A central composite design for extraction variables.
    Rai A; Mohanty B; Bhargava R
    Food Chem; 2016 Feb; 192():647-59. PubMed ID: 26304395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Extraction and purification process of total fatty acid in Brassica campestris pollen].
    Li L; Wu Y; Yuan SW; Yang J; Yang YF; Ding G; Xiao W
    Zhongguo Zhong Yao Za Zhi; 2016 Jan; 41(2):226-232. PubMed ID: 28861968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High pressure extraction of olive leaves (
    Rosa AD; Junges A; Fernandes IA; Cansian RL; Corazza ML; Franceschi E; Backes GT; Valduga E
    J Food Sci Technol; 2019 Aug; 56(8):3864-3876. PubMed ID: 31413412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of extraction process parameters of caffeic acid from microalgae by supercritical carbon dioxide green technology.
    Pyne S; Paria K
    BMC Chem; 2022 May; 16(1):31. PubMed ID: 35562772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].
    Wu Y; Xiao XY; Ge FH
    Zhong Yao Cai; 2012 Feb; 35(2):300-3. PubMed ID: 22822678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.
    Zhang ZS; Liu YL; Che LM
    J Oleo Sci; 2018 Mar; 67(3):255-263. PubMed ID: 29459511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caferana seeds (
    Fraga S; Domingues Nasário F; Gonçalves D; Antonio Cabral F; José Maximo G; José de Almeida Meirelles A; Jocelyne Marsaioli A; Araujo Sampaio K
    Food Chem X; 2021 Dec; 12():100161. PubMed ID: 34877526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green-based methods to obtain bioactive compounds from
    Cadena-Carrera S; Tramontin DP; Jacques R; Scapin E; Müller JM; Hense H
    Nat Prod Res; 2023; 37(18):3103-3108. PubMed ID: 36370059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical Extraction of Red Propolis: Operational Conditions and Chemical Characterization.
    Reis JHO; Machado BAS; Barreto GA; Anjos JPD; Fonseca LMDS; Santos AAB; Pessoa FLP; Druzian JI
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valorization of papaya (
    Castro-Vargas HI; Baumann W; Ferreira SRS; Parada-Alfonso F
    J Food Sci Technol; 2019 Jun; 56(6):3055-3066. PubMed ID: 31205360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans.
    Ahmad I; Syakfanaya AM; Azminah A; Saputri FC; Mun'im A
    Heliyon; 2021 Aug; 7(8):e07702. PubMed ID: 34401583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling and Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Quinoa by Response Surface Methodology.
    Melini V; Melini F
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.