These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34630062)

  • 1. THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks.
    Muttenthaler L; Hebart MN
    Front Neuroinform; 2021; 15():679838. PubMed ID: 34630062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains.
    Chen X; Zhou M; Gong Z; Xu W; Liu X; Huang T; Zhen Z; Liu J
    Front Comput Neurosci; 2020; 14():580632. PubMed ID: 33328946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting and visualizing hidden activations and computational graphs of PyTorch models with TorchLens.
    Taylor J; Kriegeskorte N
    Sci Rep; 2023 Sep; 13(1):14375. PubMed ID: 37658079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TorchLens: A Python package for extracting and visualizing hidden activations of PyTorch models.
    Taylor J; Kriegeskorte N
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
    Nonaka S; Majima K; Aoki SC; Kamitani Y
    iScience; 2021 Sep; 24(9):103013. PubMed ID: 34522856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representational Distance Learning for Deep Neural Networks.
    McClure P; Kriegeskorte N
    Front Comput Neurosci; 2016; 10():131. PubMed ID: 28082889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network.
    Matsui T; Taki M; Pham TQ; Chikazoe J; Jimura K
    Front Neuroinform; 2021; 15():802938. PubMed ID: 35369003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving robustness of a deep learning-based lung-nodule classification model of CT images with respect to image noise.
    Gao Y; Xiong J; Shen C; Jia X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34818638
    [No Abstract]   [Full Text] [Related]  

  • 15. Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies.
    Reddy L; Cichy RM; VanRullen R
    eNeuro; 2021; 8(3):. PubMed ID: 33903182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature selection may improve deep neural networks for the bioinformatics problems.
    Chen Z; Pang M; Zhao Z; Li S; Miao R; Zhang Y; Feng X; Feng X; Zhang Y; Duan M; Huang L; Zhou F
    Bioinformatics; 2020 Mar; 36(5):1542-1552. PubMed ID: 31591638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of behavioral and neural similarity spaces using pruned DNNs.
    Tarigopula P; Fairhall SL; Bavaresco A; Truong N; Hasson U
    Neural Netw; 2023 Nov; 168():89-104. PubMed ID: 37748394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.