These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34630063)

  • 1. SpikePropamine: Differentiable Plasticity in Spiking Neural Networks.
    Schmidgall S; Ashkanazy J; Lawson W; Hays J
    Front Neurorobot; 2021; 15():629210. PubMed ID: 34630063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks.
    Schmidgall S; Hays J
    Front Neurosci; 2023; 17():1183321. PubMed ID: 37250397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
    Wu Y; Deng L; Li G; Zhu J; Shi L
    Front Neurosci; 2018; 12():331. PubMed ID: 29875621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Spiking Neural Networks for Reinforcement Learning Tasks With Temporal Coding Method.
    Wu G; Liang D; Luan S; Wang J
    Front Neurosci; 2022; 16():877701. PubMed ID: 36061595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory-Dependent Computation and Learning in Spiking Neural Networks Through Hebbian Plasticity.
    Limbacher T; Ozdenizci O; Legenstein R
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38113154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training Spiking Neural Networks for Cognitive Tasks: A Versatile Framework Compatible With Various Temporal Codes.
    Hong C; Wei X; Wang J; Deng B; Yu H; Che Y
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1285-1296. PubMed ID: 31247574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Convolutional Spiking Neural Network With Biologically Plausible Reward Propagation.
    Zhang T; Jia S; Cheng X; Xu B
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7621-7631. PubMed ID: 34125691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models developed for spiking neural networks.
    Rezghi Shirsavar S; Vahabie AH; A Dehaqani MR
    MethodsX; 2023; 10():102157. PubMed ID: 37077894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skip-Connected Self-Recurrent Spiking Neural Networks With Joint Intrinsic Parameter and Synaptic Weight Training.
    Zhang W; Li P
    Neural Comput; 2021 Jun; 33(7):1886-1913. PubMed ID: 34411267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks.
    Han B; Zhao F; Zeng Y; Shen G
    IEEE Trans Pattern Anal Mach Intell; 2024 Sep; PP():. PubMed ID: 39316493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
    Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.