These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34630365)

  • 41. The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without Bioaugmentation.
    Piubeli FA; Dos Santos LG; Fernández EN; DA Silva FH; Durrant LR; Grossman MJ
    Pol J Microbiol; 2018; 67(3):365-375. PubMed ID: 30451454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium.
    Villaverde J; Rubio-Bellido M; Merchán F; Morillo E
    J Environ Manage; 2017 Mar; 188():379-386. PubMed ID: 28011373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced bioremediation of lindane-contaminated soils through microbial bioaugmentation assisted by biostimulation with sugarcane filter cake.
    Raimondo EE; Aparicio JD; Bigliardo AL; Fuentes MS; Benimeli CS
    Ecotoxicol Environ Saf; 2020 Mar; 190():110143. PubMed ID: 31918254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Data on physico-chemical characteristics and elemental composition of gray forest soils (Greyzemic Phaeozems) in natural-technogenic landscapes of Moscow brown coal basin.
    Kostin AS; Krechetov PP; Chernitsova OV; Terskaya EV
    Data Brief; 2021 Apr; 35():106817. PubMed ID: 33718537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils.
    Morgante V; López-López A; Flores C; González M; González B; Vásquez M; Rosselló-Mora R; Seeger M
    FEMS Microbiol Ecol; 2010 Jan; 71(1):114-26. PubMed ID: 19889033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new formula for a mild body cleanser: sodium laureth sulphate supplemented with sodium laureth carboxylate and lauryl glucoside.
    Takagi Y; Shimizu M; Morokuma Y; Miyaki M; Kiba A; Matsuo K; Isoda K; Mizutani H
    Int J Cosmet Sci; 2014 Aug; 36(4):305-11. PubMed ID: 24617572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.
    Wu M; Ye X; Chen K; Li W; Yuan J; Jiang X
    Environ Pollut; 2017 Apr; 223():657-664. PubMed ID: 28196719
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil.
    Wu M; Wu J; Zhang X; Ye X
    Chemosphere; 2019 Dec; 237():124456. PubMed ID: 31376701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate.
    Bajagain R; Gautam P; Jeong SW
    Environ Geochem Health; 2020 Jun; 42(6):1705-1714. PubMed ID: 31197553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioaugmentation of acetamiprid-contaminated soil with Pigmentiphaga sp. strain D-2 and its effect on the soil microbial community.
    Yang H; Zhang Y; Chuang S; Cao W; Ruan Z; Xu X; Jiang J
    Ecotoxicology; 2021 Oct; 30(8):1559-1571. PubMed ID: 33443714
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.
    Bento FM; Camargo FA; Okeke BC; Frankenberger WT
    Bioresour Technol; 2005 Jun; 96(9):1049-55. PubMed ID: 15668201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioremediation potential of diesel-contaminated Libyan soil.
    Koshlaf E; Shahsavari E; Aburto-Medina A; Taha M; Haleyur N; Makadia TH; Morrison PD; Ball AS
    Ecotoxicol Environ Saf; 2016 Nov; 133():297-305. PubMed ID: 27479774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sorption-desorption and biodegradation of sulfometuron-methyl and its effects on the bacterial communities in Amazonian soils amended with aged biochar.
    Obregón Alvarez D; Mendes KF; Tosi M; Fonseca de Souza L; Campos Cedano JC; de Souza Falcão NP; Dunfield K; Tsai SM; Tornisielo VL
    Ecotoxicol Environ Saf; 2021 Jan; 207():111222. PubMed ID: 32890950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molinate biodegradation in soils: natural attenuation versus bioaugmentation.
    Lopes AR; Danko AS; Manaia CM; Nunes OC
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2691-700. PubMed ID: 22543452
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Enhanced contaminant remediation via activated soil bioaugmentation.
    Gentry TJ; Josephson KL; Pepper IL
    Biodegradation; 2004 Feb; 15(1):67-75. PubMed ID: 14971859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of nitrate stimulated hydrocarbon degrading microbial consortia from refinery sludge as potent bioaugmenting agent for enhanced bioremediation of petroleum contaminated waste.
    Sarkar J; Saha A; Roy A; Bose H; Pal S; Sar P; Kazy SK
    World J Microbiol Biotechnol; 2020 Sep; 36(10):156. PubMed ID: 32959106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study.
    Andreolli M; Lampis S; Brignoli P; Vallini G
    J Environ Manage; 2015 Apr; 153():121-31. PubMed ID: 25688477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.
    Nikolopoulou M; Pasadakis N; Kalogerakis N
    Mar Pollut Bull; 2013 Jul; 72(1):165-73. PubMed ID: 23660443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of a 10.22 m diameter EPB shield: a case study in Beijing subway construction.
    Li X; Yuan D; Guo Y; Cai Z
    Springerplus; 2016; 5(1):2004. PubMed ID: 27933260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.