BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 34630403)

  • 1. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends.
    Barros MS; de Araújo ND; Magalhães-Gama F; Pereira Ribeiro TL; Alves Hanna FS; Tarragô AM; Malheiro A; Costa AG
    Front Immunol; 2021; 12():729085. PubMed ID: 34630403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release.
    Park JA; Santich BH; Xu H; Lum LG; Cheung NV
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 33986124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity.
    de Araújo ND; Gama FM; de Souza Barros M; Ribeiro TLP; Alves FS; Xabregas LA; Tarragô AM; Malheiro A; Costa AG
    J Immunol Res; 2021; 2021():6633824. PubMed ID: 33506055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation.
    Reyes RM; Deng Y; Zhang D; Ji N; Mukherjee N; Wheeler K; Gupta HB; Padron AS; Kancharla A; Zhang C; Garcia M; Kornepati AVR; Boyman O; Conejo-Garcia JR; Svatek RS; Curiel TJ
    J Immunother Cancer; 2021 Apr; 9(4):. PubMed ID: 33849925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting.
    Li Y; Li G; Zhang J; Wu X; Chen X
    Front Immunol; 2020; 11():619954. PubMed ID: 33664732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. γδ cell-based immunotherapy for cancer.
    Lo Presti E; Corsale AM; Dieli F; Meraviglia S
    Expert Opin Biol Ther; 2019 Sep; 19(9):887-895. PubMed ID: 31220420
    [No Abstract]   [Full Text] [Related]  

  • 7. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors.
    Park JH; Kim HJ; Kim CW; Kim HC; Jung Y; Lee HS; Lee Y; Ju YS; Oh JE; Park SH; Lee JH; Lee SK; Lee HK
    Nat Immunol; 2021 Mar; 22(3):336-346. PubMed ID: 33574616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells.
    Morandi F; Yazdanifar M; Cocco C; Bertaina A; Airoldi I
    Cells; 2020 Jul; 9(8):. PubMed ID: 32707982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapy Approaches Beyond PD-1 Inhibition: the Future of Cellular Therapy for Head and Neck Squamous Cell Carcinoma.
    Qureshi HA; Lee SM
    Curr Treat Options Oncol; 2019 Mar; 20(4):31. PubMed ID: 30874960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial: γδ T Cells in Cancer.
    Coffelt SB; Kabelitz D; Silva-Santos B; Kuball J; Born W; Bank I
    Front Immunol; 2020; 11():602411. PubMed ID: 33329597
    [No Abstract]   [Full Text] [Related]  

  • 12. Renal Cell Carcinoma-Infiltrating CD3
    Lee HW; Park C; Joung JG; Kang M; Chung YS; Oh WJ; Yeom SY; Park WY; Kim TJ; Seo SI
    Curr Issues Mol Biol; 2021 May; 43(1):226-239. PubMed ID: 34071865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD19-specific triplebody SPM-1 engages NK and γδ T cells for rapid and efficient lysis of malignant B-lymphoid cells.
    Schiller CB; Braciak TA; Fenn NC; Seidel UJ; Roskopf CC; Wildenhain S; Honegger A; Schubert IA; Schele A; Lämmermann K; Fey GH; Jacob U; Lang P; Hopfner KP; Oduncu FS
    Oncotarget; 2016 Dec; 7(50):83392-83408. PubMed ID: 27825135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers.
    Inthagard J; Edwards J; Roseweir AK
    Clin Sci (Lond); 2019 Jan; 133(2):181-193. PubMed ID: 30659159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIM-3 blockade combined with bispecific antibody MT110 enhances the anti-tumor effect of γδ T cells.
    Guo Q; Zhao P; Zhang Z; Zhang J; Zhang Z; Hua Y; Han B; Li N; Zhao X; Hou L
    Cancer Immunol Immunother; 2020 Dec; 69(12):2571-2587. PubMed ID: 32588076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. γδ T cells in cancer immunotherapy.
    Zou C; Zhao P; Xiao Z; Han X; Fu F; Fu L
    Oncotarget; 2017 Jan; 8(5):8900-8909. PubMed ID: 27823972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. γδ T Cells in Tumor Microenvironment.
    Imbert C; Olive D
    Adv Exp Med Biol; 2020; 1273():91-104. PubMed ID: 33119877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NKG2A expression identifies a subset of human Vδ2 T cells exerting the highest antitumor effector functions.
    Cazzetta V; Bruni E; Terzoli S; Carenza C; Franzese S; Piazza R; Marzano P; Donadon M; Torzilli G; Cimino M; Simonelli M; Bello L; Villa A; Tan L; Ravens S; Prinz I; Supino D; Colombo FS; Lugli E; Marcenaro E; Vivier E; Della Bella S; Mikulak J; Mavilio D
    Cell Rep; 2021 Oct; 37(3):109871. PubMed ID: 34686325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editorial: Understanding Gamma Delta T Cell Multifunctionality - Towards Immunotherapeutic Applications.
    Gustafsson K; Herrmann T; Dieli F
    Front Immunol; 2020; 11():921. PubMed ID: 32477369
    [No Abstract]   [Full Text] [Related]  

  • 20. Rescuing lymphocytes from HLA-G immunosuppressive effects mediated by the tumor microenvironment.
    Wu D; Kuiaste I; Moreau P; Carosella E; Yotnda P
    Oncotarget; 2015 Nov; 6(35):37385-97. PubMed ID: 26460949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.