These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34630549)

  • 1. Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network.
    Wu J; Chen X; Zhang Z
    Comput Intell Neurosci; 2021; 2021():6036118. PubMed ID: 34630549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logistic regression paradigm for training a single-hidden layer feedforward neural network. Application to gene expression datasets for cancer research.
    Belciug S
    J Biomed Inform; 2020 Feb; 102():103373. PubMed ID: 31901506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem.
    Zhang MY; Wu Q; Xu ZZ
    Math Biosci Eng; 2019 May; 16(5):4692-4707. PubMed ID: 31499684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks.
    Huynh HT; Won Y; Kim JJ
    Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGBT Fault Prediction Combining Terminal Characteristics and Artificial Intelligence Neural Network.
    Li C
    Comput Math Methods Med; 2022; 2022():7459354. PubMed ID: 35872937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning a single-hidden layer feedforward neural network using a rank correlation-based strategy with application to high dimensional gene expression and proteomic spectra datasets in cancer detection.
    Belciug S; Gorunescu F
    J Biomed Inform; 2018 Jul; 83():159-166. PubMed ID: 29890313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized single-hidden layer feedforward networks for regression problems.
    Wang N; Er MJ; Han M
    IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1161-76. PubMed ID: 25051564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.
    Abuassba AOM; Zhang D; Luo X; Shaheryar A; Ali H
    Comput Intell Neurosci; 2017; 2017():3405463. PubMed ID: 28546808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel multiple instance learning method based on extreme learning machine.
    Wang J; Cai L; Peng J; Jia Y
    Comput Intell Neurosci; 2015; 2015():405890. PubMed ID: 25705220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Equivalence of FIS and ELM for Interpretable Rule-Based Knowledge Representation.
    Wong SY; Yap KS; Yap HJ; Tan SC; Chang SW
    IEEE Trans Neural Netw Learn Syst; 2015 Jul; 26(7):1417-30. PubMed ID: 25134093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Improved Bird Swarm Algorithm with Extreme Learning Machine for Short-Term Power Prediction in Photovoltaic Power Generation System.
    Wu D; Kan J; Lin HC; Li S
    Comput Intell Neurosci; 2021; 2021():6638436. PubMed ID: 34484324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The generalized extreme learning machines: Tuning hyperparameters and limiting approach for the Moore-Penrose generalized inverse.
    Kim M
    Neural Netw; 2021 Dec; 144():591-602. PubMed ID: 34634606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer's Disease Study.
    Lu J; Zeng W; Zhang L; Shi Y
    Front Aging Neurosci; 2022; 14():888575. PubMed ID: 35693342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme Learning Machine for Heartbeat Classification with Hybrid Time-Domain and Wavelet Time-Frequency Features.
    Xu Y; Zhang S; Cao Z; Chen Q; Xiao W
    J Healthc Eng; 2021; 2021():6674695. PubMed ID: 33505643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Method Based on Extreme Learning Machine and Self Organizing Map for Pattern Classification.
    Jammoussi I; Ben Nasr M
    Comput Intell Neurosci; 2020; 2020():2918276. PubMed ID: 32908471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Bayesian extreme learning machine for multi-classification.
    Luo J; Vong CM; Wong PK
    IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):836-43. PubMed ID: 24807961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved Pathological Brain Detection System Based on Two-Dimensional PCA and Evolutionary Extreme Learning Machine.
    Nayak DR; Dash R; Majhi B
    J Med Syst; 2017 Dec; 42(1):19. PubMed ID: 29218420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal adaptive weight synthesized-local directional pattern-based image classification using enhanced tree seed algorithm.
    Ganesan A; Santhanam SM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77462-77481. PubMed ID: 35680742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retracted: Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network.
    Intelligence And Neuroscience C
    Comput Intell Neurosci; 2023; 2023():9802158. PubMed ID: 37416576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization.
    Kuppili V; Biswas M; Sreekumar A; Suri HS; Saba L; Edla DR; Marinho RT; Sanches JM; Suri JS
    J Med Syst; 2017 Aug; 41(10):152. PubMed ID: 28836045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.