These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 34631673)
1. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors. Zhang M; Zheng X; Mu J; Liu P; Yuan W; Li S; Wang X; Fang H; Liu H; Xing T; Hu H; Wu M Front Chem; 2021; 9():760473. PubMed ID: 34631673 [TBL] [Abstract][Full Text] [Related]
2. High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. Han C; Shi R; Zhou D; Li H; Xu L; Zhang T; Li J; Kang F; Wang G; Li B ACS Appl Mater Interfaces; 2019 May; 11(17):15646-15655. PubMed ID: 30945842 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. Luan Y; Hu R; Fang Y; Zhu K; Cheng K; Yan J; Ye K; Wang G; Cao D Nanomicro Lett; 2019 Apr; 11(1):30. PubMed ID: 34137976 [TBL] [Abstract][Full Text] [Related]
4. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors. Xiao Y; He D; Peng W; Chen S; Liu J; Chen H; Xin S; Bai Y ACS Appl Mater Interfaces; 2021 Mar; 13(8):10336-10348. PubMed ID: 33599127 [TBL] [Abstract][Full Text] [Related]
5. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors. Li Z; Cao L; Chen W; Huang Z; Liu H Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Jiang J; Shen Q; Chen Z; Wang S Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764554 [TBL] [Abstract][Full Text] [Related]
7. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor. Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761 [TBL] [Abstract][Full Text] [Related]
8. S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors. Hao J; Bai J; Wang X; Wang Y; Guo Q; Yang Y; Zhao J; Chi C; Li Y Nanoscale Adv; 2021 Feb; 3(3):738-746. PubMed ID: 36133845 [TBL] [Abstract][Full Text] [Related]
9. Binder-free boron-doped Si nanowires toward the enhancement of lithium-ion capacitor. Li M; Song S; Li Y; Jevasuwan W; Fukata N; Bae J Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37207636 [TBL] [Abstract][Full Text] [Related]
10. Carbon-reinforced Ni Deng XG; Fan LQ; Fu XY; Tang T; Lin SH; Chen L; Yu FD; Huang YF; Huang ML; Wu JH J Colloid Interface Sci; 2024 May; 661():237-248. PubMed ID: 38301462 [TBL] [Abstract][Full Text] [Related]
11. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853 [TBL] [Abstract][Full Text] [Related]
12. Encapsulation of Fe Li Y; Liang T; Wang R; He B; Gong Y; Wang H ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955 [TBL] [Abstract][Full Text] [Related]
13. Na Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727 [TBL] [Abstract][Full Text] [Related]
14. High Performance Lithium-Ion Hybrid Capacitors Employing Fe Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525 [TBL] [Abstract][Full Text] [Related]
15. Holey Ti Zhou HY; Lin LW; Sui ZY; Wang HY; Han BH ACS Appl Mater Interfaces; 2023 Mar; 15(9):12161-12170. PubMed ID: 36812348 [TBL] [Abstract][Full Text] [Related]
16. 3D Porous Oxygen-Doped and Nitrogen-Doped Graphitic Carbons Derived from Metal Azolate Frameworks as Cathode and Anode Materials for High-Performance Dual-Carbon Sodium-Ion Hybrid Capacitors. Jung YM; Choi JH; Kim DW; Kang JK Adv Sci (Weinh); 2023 Aug; 10(24):e2301160. PubMed ID: 37328437 [TBL] [Abstract][Full Text] [Related]
18. Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. Han C; Tong J; Tang X; Zhou D; Duan H; Li B; Wang G ACS Appl Mater Interfaces; 2020 Mar; 12(9):10479-10489. PubMed ID: 32049486 [TBL] [Abstract][Full Text] [Related]
19. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751 [TBL] [Abstract][Full Text] [Related]
20. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials. Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS Small; 2017 Feb; 13(6):. PubMed ID: 27893190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]