These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34632413)

  • 41. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics.
    Gérard A; Woolfe A; Mottet G; Reichen M; Castrillon C; Menrath V; Ellouze S; Poitou A; Doineau R; Briseno-Roa L; Canales-Herrerias P; Mary P; Rose G; Ortega C; Delincé M; Essono S; Jia B; Iannascoli B; Richard-Le Goff O; Kumar R; Stewart SN; Pousse Y; Shen B; Grosselin K; Saudemont B; Sautel-Caillé A; Godina A; McNamara S; Eyer K; Millot GA; Baudry J; England P; Nizak C; Jensen A; Griffiths AD; Bruhns P; Brenan C
    Nat Biotechnol; 2020 Jun; 38(6):715-721. PubMed ID: 32231335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene Expression Analysis of T-Cells by Single-Cell RNA-Seq.
    Lo Tartaro D; De Biasi S; Forcato M; Gibellini L; Cossarizza A
    Methods Mol Biol; 2021; 2285():277-296. PubMed ID: 33928560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing.
    Hernández Martínez A; Madurga R; García-Romero N; Ayuso-Sacido Á
    Cancer Lett; 2022 Feb; 527():66-79. PubMed ID: 34902524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation of human ESC-derived cardiac derivatives and embryonic heart cells for population and single-cell RNA-seq analysis.
    Santoro F; Chien KR; Sahara M
    STAR Protoc; 2021 Mar; 2(1):100339. PubMed ID: 33644774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determining the 3D genome structure of a single mammalian cell with Dip-C.
    Tan L
    STAR Protoc; 2021 Sep; 2(3):100622. PubMed ID: 34195675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state.
    Rotem A; Ram O; Shoresh N; Sperling RA; Goren A; Weitz DA; Bernstein BE
    Nat Biotechnol; 2015 Nov; 33(11):1165-72. PubMed ID: 26458175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-cell transcriptomics enters the age of mass production.
    Junker JP; van Oudenaarden A
    Mol Cell; 2015 May; 58(4):563-4. PubMed ID: 26000840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-cell PCR analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers.
    Franzin C; Piccoli M; Serena E; Bertin E; Urbani L; Luni C; Pasqualetto V; Eaton S; Elvassore N; De Coppi P; Pozzobon M
    Biol Cell; 2013 Dec; 105(12):549-60. PubMed ID: 24024612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An optimized protocol to identify keratinocyte subpopulations in vitro by single-cell RNA sequencing analysis.
    Siriwach R; Ngo AQ; Narumiya S; Thumkeo D
    STAR Protoc; 2022 Dec; 3(4):101906. PubMed ID: 36595953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining whole-cell patch clamp and dye loading in acute brain slices with bulk RNA sequencing in embryonic to aged mice.
    Kamen Y; Káradóttir RT
    STAR Protoc; 2021 Jun; 2(2):100439. PubMed ID: 33899020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protocol for Establishing Mouse Embryonic Stem Cells to Study Histone Inheritance Pattern at Single-Cell Resolution.
    Ma B; Trieu TJ; Habib SJ; Chen X
    STAR Protoc; 2020 Dec; 1(3):100178. PubMed ID: 33377072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protocol for Single-Nucleus Transcriptomics of Diploid and Tetraploid Cardiomyocytes in Murine Hearts.
    Cui M; Olson EN
    STAR Protoc; 2020 Sep; 1(2):100049. PubMed ID: 33111095
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a microfluidic platform for single-cell secretion analysis using a direct photoactive cell-attaching method.
    Jang K; Ngo HT; Tanaka Y; Xu Y; Mawatari K; Kitamori T
    Anal Sci; 2011; 27(10):973-8. PubMed ID: 21985920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
    Vallejo D; Nikoomanzar A; Paegel BM; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1430-1440. PubMed ID: 31120731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-step micromolding of complex 3D microchambers for single-cell analysis.
    Suzuki H; Mitsuno K; Shiroguchi K; Tsugane M; Okano T; Dohi T; Tsuji T
    Lab Chip; 2017 Feb; 17(4):647-652. PubMed ID: 28150829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.