These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34632476)

  • 41. Acoustofluidic coating of particles and cells.
    Ayan B; Ozcelik A; Bachman H; Tang SY; Xie Y; Wu M; Li P; Huang TJ
    Lab Chip; 2016 Nov; 16(22):4366-4372. PubMed ID: 27754503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation.
    Gu Y; Chen C; Rufo J; Shen C; Wang Z; Huang PH; Fu H; Zhang P; Cummer SA; Tian Z; Huang TJ
    ACS Nano; 2020 Nov; 14(11):14635-14645. PubMed ID: 32574491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multimodal Optothermal Manipulations along Various Surfaces.
    Ding H; Kollipara PS; Yao K; Chang Y; Dickinson DJ; Zheng Y
    ACS Nano; 2023 May; 17(10):9280-9289. PubMed ID: 37017427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P; Chase JG; Gaynor P; Oback B; Wang W
    Lab Chip; 2014 Aug; 14(15):2717-27. PubMed ID: 24933556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.
    Huang PH; Chan CY; Li P; Nama N; Xie Y; Wei CH; Chen Y; Ahmed D; Huang TJ
    Lab Chip; 2015 Nov; 15(21):4166-76. PubMed ID: 26338516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia.
    Zhang S; Zhang R; Wang Y; Onck PR; den Toonder JMJ
    ACS Nano; 2020 Aug; 14(8):10313-10323. PubMed ID: 32806065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-Chip Arbitrary Manipulation of Single Particles by Acoustic Resonator Array.
    You R; Wu H; Pang W; Duan X
    Anal Chem; 2022 Apr; 94(13):5392-5398. PubMed ID: 35319870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles.
    Zhao Y; Cho SK
    Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
    Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precise micro-particle and bubble manipulation by tunable ultrasonic bottle beams.
    Zhou Q; Li M; Fu C; Ren X; Xu Z; Liu X
    Ultrason Sonochem; 2021 Jul; 75():105602. PubMed ID: 34052721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of dielectrophoresis based 3D-focusing in microfluidic devices with planar electrodes.
    Hilal-Alnaqbi A; Alazzam A; Dagher S; Mathew B
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3588-3591. PubMed ID: 29060674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual-fiber microfluidic chip for multimodal manipulation of single cells.
    Huang L; Feng Y; Liang F; Zhao P; Wang W
    Biomicrofluidics; 2021 Jan; 15(1):014106. PubMed ID: 33537113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications.
    Connacher W; Zhang N; Huang A; Mei J; Zhang S; Gopesh T; Friend J
    Lab Chip; 2018 Jul; 18(14):1952-1996. PubMed ID: 29922774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications.
    Läubli NF; Gerlt MS; Wüthrich A; Lewis RTM; Shamsudhin N; Kutay U; Ahmed D; Dual J; Nelson BJ
    Anal Chem; 2021 Jul; 93(28):9760-9770. PubMed ID: 34228921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative assessment of parallel acoustofluidic device.
    Dezfuli MR; Shahidian A; Ghassemi M
    J Acoust Soc Am; 2021 Jul; 150(1):233. PubMed ID: 34340481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.