BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 34632589)

  • 1. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D liver tumor localization using cone-beam projections and a biomechanical model.
    Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J
    Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
    Zhang Y; Folkert MR; Huang X; Ren L; Meyer J; Tehrani JN; Reynolds R; Wang J
    Quant Imaging Med Surg; 2019 Jul; 9(7):1337-1349. PubMed ID: 31448218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.
    Shao HC; Li Y; Wang J; Jiang S; Zhang Y
    Med Phys; 2023 Nov; 50(11):6649-6662. PubMed ID: 37922461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unsupervised 2D-3D deformable registration network (2D3D-RegNet) for cone-beam CT estimation.
    Zhang Y
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33631734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biomechanical Modeling Guided CBCT Estimation Technique.
    Zhang Y; Tehrani JN; Wang J
    IEEE Trans Med Imaging; 2017 Feb; 36(2):641-652. PubMed ID: 27831866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time liver tumor localization via combined surface imaging and a single x-ray projection.
    Shao HC; Li Y; Wang J; Jiang S; Zhang Y
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36731143
    [No Abstract]   [Full Text] [Related]  

  • 9. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain.
    Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH
    Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer.
    Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M
    Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning based fast and accurate 3D CT deformable image registration in lung cancer.
    Ding Y; Feng H; Yang Y; Holmes J; Liu Z; Liu D; Wong WW; Yu NY; Sio TT; Schild SE; Li B; Liu W
    Med Phys; 2023 Nov; 50(11):6864-6880. PubMed ID: 37289193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning based direct segmentation assisted by deformable image registration for cone-beam CT based auto-segmentation for adaptive radiotherapy.
    Liang X; Morgan H; Bai T; Dohopolski M; Nguyen D; Jiang S
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36657169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformable registration of lateral cephalogram and cone-beam computed tomography image.
    Zhang Y; Qin H; Li P; Pei Y; Guo Y; Xu T; Zha H
    Med Phys; 2021 Nov; 48(11):6901-6915. PubMed ID: 34496039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-fraction deformable image registration using unsupervised deep learning for CBCT-guided abdominal radiotherapy.
    Xie H; Lei Y; Fu Y; Wang T; Roper J; Bradley JD; Patel P; Liu T; Yang X
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36958049
    [No Abstract]   [Full Text] [Related]  

  • 15. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy.
    Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X
    Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced 4-dimensional cone-beam computed tomography reconstruction by combining motion estimation, motion-compensated reconstruction, biomechanical modeling and deep learning.
    Zhang Y; Huang X; Wang J
    Vis Comput Ind Biomed Art; 2019; 2(1):23. PubMed ID: 32190409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks.
    Fu Y; Wang T; Lei Y; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jan; 48(1):253-263. PubMed ID: 33164219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
    Huang H; Liu Y; Siewerdsen JH; Lu A; Hu Y; Zbijewski W; Unberath M; Weiss CR; Sisniega A
    Med Phys; 2024 Jun; 51(6):4158-4180. PubMed ID: 38733602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous 4D-CBCT reconstruction with sliding motion constraint.
    Dang J; Yin FF; You T; Dai C; Chen D; Wang J
    Med Phys; 2016 Oct; 43(10):5453. PubMed ID: 27782722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.