BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34632687)

  • 1. Strong and tunable anti-CRISPR/Cas activities in plants.
    Calvache C; Vazquez-Vilar M; Selma S; Uranga M; Fernández-Del-Carmen A; Daròs JA; Orzáez D
    Plant Biotechnol J; 2022 Feb; 20(2):399-408. PubMed ID: 34632687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-Tuning Cas9 Activity with a Cognate Inhibitor AcrIIA4 to Improve Genome Editing in
    Jiang YH; Liu YF; Wang K; Zhou JY; Guo F; Zhao QW; Mao XM
    ACS Synth Biol; 2021 Nov; 10(11):2833-2841. PubMed ID: 34734710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disabling Cas9 by an anti-CRISPR DNA mimic.
    Shin J; Jiang F; Liu JJ; Bray NL; Rauch BJ; Baik SH; Nogales E; Bondy-Denomy J; Corn JE; Doudna JA
    Sci Adv; 2017 Jul; 3(7):e1701620. PubMed ID: 28706995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.
    Kim I; Jeong M; Ka D; Han M; Kim NK; Bae E; Suh JY
    Sci Rep; 2018 Mar; 8(1):3883. PubMed ID: 29497118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis.
    Ali Z; Eid A; Ali S; Mahfouz MM
    Virus Res; 2018 Jan; 244():333-337. PubMed ID: 29051052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgene-Free Genome Editing in Nicotiana benthamiana with CRISPR/Cas9 Delivered by a Rhabdovirus Vector.
    Ma X; Li X; Li Z
    Methods Mol Biol; 2023; 2653():173-185. PubMed ID: 36995626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy.
    Matsumoto D; Tamamura H; Nomura W
    Commun Biol; 2020 Oct; 3(1):601. PubMed ID: 33097793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Vectors and Targeting Strategies Including GoldenBraid and Genome Editing Tools: GoldenBraid Assembly of Multiplex CRISPR /Cas12a Guide RNAs for Gene Editing in Nicotiana benthamiana.
    González B; Vazquez-Vilar M; Sánchez-Vicente J; Orzáez D
    Methods Mol Biol; 2022; 2480():193-214. PubMed ID: 35616865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems.
    Filippova J; Matveeva A; Zhuravlev E; Stepanov G
    Biochimie; 2019 Dec; 167():49-60. PubMed ID: 31493470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants.
    Ariga H; Toki S; Ishibashi K
    Plant Cell Physiol; 2020 Dec; 61(11):1946-1953. PubMed ID: 32991731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing.
    Luo Y; Na R; Nowak JS; Qiu Y; Lu QS; Yang C; Marsolais F; Tian L
    BMC Plant Biol; 2021 Sep; 21(1):419. PubMed ID: 34517842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.
    Lee K; Zhang Y; Kleinstiver BP; Guo JA; Aryee MJ; Miller J; Malzahn A; Zarecor S; Lawrence-Dill CJ; Joung JK; Qi Y; Wang K
    Plant Biotechnol J; 2019 Feb; 17(2):362-372. PubMed ID: 29972722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.