These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34632779)

  • 21. Cyclopropanes and hypervalent iodine reagents: high energy compounds for applications in synthesis and catalysis.
    Fernández González D; De Simone F; Brand JP; Nicolai S; Waser J
    Chimia (Aarau); 2011; 65(9):649-51. PubMed ID: 22026171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Olefin Dihydroxylation Using Nitroarenes as Photoresponsive Oxidants.
    Hampton C; Simonetti M; Leonori D
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202214508. PubMed ID: 36509705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts.
    Romero RM; Wöste TH; Muñiz K
    Chem Asian J; 2014 Apr; 9(4):972-83. PubMed ID: 24591421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypervalent iodine reagents as a new entrance to organocatalysts.
    Dohi T; Kita Y
    Chem Commun (Camb); 2009 Apr; (16):2073-85. PubMed ID: 19360157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypervalent-Iodine(III)-Mediated Oxidative Methodology for the Synthesis of Fused Triazoles.
    Kamal R; Kumar V; Kumar R
    Chem Asian J; 2016 Jul; 11(14):1988-2000. PubMed ID: 27123538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypervalent Iodine (III) Catalyzed Regio- and Diastereoselective Aminochlorination of Tailored Electron Deficient Olefins via GAP Chemistry.
    Rahman AU; Zarshad N; Zhou P; Yang W; Li G; Ali A
    Front Chem; 2020; 8():523. PubMed ID: 32733847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective diamination with novel chiral hypervalent iodine catalysts.
    Mizar P; Laverny A; El-Sherbini M; Farid U; Brown M; Malmedy F; Wirth T
    Chemistry; 2014 Aug; 20(32):9910-3. PubMed ID: 25042733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents.
    Hari DP; Waser J
    J Am Chem Soc; 2016 Feb; 138(7):2190-3. PubMed ID: 26870873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient generation of perfluoroalkyl radicals from sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent: mild, metal-free synthesis of perfluoroalkylated organic molecules.
    Sakamoto R; Kashiwagi H; Selvakumar S; Moteki SA; Maruoka K
    Org Biomol Chem; 2016 Jul; 14(27):6417-21. PubMed ID: 27304228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypervalent iodine: a powerful electrophile for asymmetric α-functionalization of carbonyl compounds.
    Dong DQ; Hao SH; Wang ZL; Chen C
    Org Biomol Chem; 2014 Jul; 12(25):4278-89. PubMed ID: 24827449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypervalent Iodine-Induced Oxidative Couplings (New Metal-Free Coupling Advances and Their Applications in Natural Product Syntheses).
    Dohi T; Kita Y
    Top Curr Chem; 2016; 373():1-23. PubMed ID: 26920160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MTO and OsO4: an efficient catalytic couple for mild H2O2-based asymmetric dihydroxylation of olefins.
    Jonsson SY; Adolfsson H; Bäckvall JE
    Chemistry; 2003 Jun; 9(12):2783-8. PubMed ID: 12866542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents.
    Le Du E; Duhail T; Wodrich MD; Scopelliti R; Fadaei-Tirani F; Anselmi E; Magnier E; Waser J
    Chemistry; 2021 Jul; 27(42):10979-10986. PubMed ID: 33978974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling and catalytic approaches for the development of a rare-metal-free synthetic method using hypervalent iodine reagent.
    Dohi T
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):135-42. PubMed ID: 20118569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. When nucleoside chemistry met hypervalent iodine reagents.
    Lakshman MK; Zajc B
    ARKIVOC; 2018; 2018(Pt II):252-279. PubMed ID: 30221252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years.
    Lee JH; Choi S; Hong KB
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31331092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Hypervalent Iodine Promoters Lead to Styrene Dimerization and the Formation of Tri- and Tetrasubstituted Cyclobutanes.
    Colomer I; Coura Barcelos R; Donohoe TJ
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4748-52. PubMed ID: 26948413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto-amination for Chiral Amine Synthesis.
    Buendia J; Grelier G; Darses B; Jarvis AG; Taran F; Dauban P
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7530-3. PubMed ID: 27158802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine Reagents.
    Wang Z; Kanai M; Kuninobu Y
    Org Lett; 2017 May; 19(9):2398-2401. PubMed ID: 28440651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of New Radical-mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents.
    Matsumoto A; Lee HJ; Maruoka K
    Chem Rec; 2020 Nov; ():. PubMed ID: 33210803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.