BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34632781)

  • 1. Rolling Circle Amplification-Assisted Flow Cytometry Approach for Simultaneous Profiling of Exosomal Surface Proteins.
    Gao X; Teng X; Dai Y; Li J
    ACS Sens; 2021 Oct; 6(10):3611-3620. PubMed ID: 34632781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APPROACH: Sensitive Detection of Exosomal Biomarkers by Aptamer-Mediated Proximity Ligation Assay and Time-Resolved Förster Resonance Energy Transfer.
    Li Y; Qian M; Liu Y; Qiu X
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes.
    Huang L; Wang DB; Singh N; Yang F; Gu N; Zhang XE
    Nanoscale; 2018 Nov; 10(43):20289-20295. PubMed ID: 30371719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification.
    Wang Z; Zong S; Liu Y; Qian Z; Zhu K; Yang Z; Wang Z; Cui Y
    Nanotechnology; 2021 Feb; 32(8):085504. PubMed ID: 33152726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-Cholesterol-Mediated Proximity Ligation Assay for Accurate Identification of Exosomes.
    Zhao X; Luo C; Mei Q; Zhang H; Zhang W; Su D; Fu W; Luo Y
    Anal Chem; 2020 Apr; 92(7):5411-5418. PubMed ID: 32207293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Recognition Triggered Proximity Ligation Combined with a Rolling Circle Amplification Strategy for Analysis of Exosomal Protein-Specific Glycosylation.
    Xu L; Lu S; Wang H; Xu H; Ye BC
    Anal Chem; 2023 Oct; 95(42):15745-15754. PubMed ID: 37842978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lectin-mediated in situ rolling circle amplification on exosomes for probing cancer-related glycan pattern.
    Feng Y; Guo Y; Li Y; Tao J; Ding L; Wu J; Ju H
    Anal Chim Acta; 2018 Dec; 1039():108-115. PubMed ID: 30322541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid exosome isolation and
    Chen Y; Gao D; Zhu Q; Chu B; Peng J; Wang J; Liu L; Jiang Y
    Analyst; 2023 May; 148(10):2387-2394. PubMed ID: 37129052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial dimerized G-quadruplex signal units engineered by cutting-mediated exponential rolling circle amplification for ultrasensitive and label-free detection of exosomes.
    Ding Z; Wei Y; Liu X; Han F; Xu Z
    Anal Chim Acta; 2023 May; 1253():341098. PubMed ID: 36965991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive Multicolor Visual Detection of Exosomes via Dual Signal Amplification Strategy of Enzyme-Catalyzed Metallization of Au Nanorods and Hybridization Chain Reaction.
    Zhang Y; Wang D; Yue S; Lu Y; Yang C; Fang J; Xu Z
    ACS Sens; 2019 Dec; 4(12):3210-3218. PubMed ID: 31820935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks.
    Cao Y; Wang Y; Yu X; Jiang X; Li G; Zhao J
    Biosens Bioelectron; 2020 Oct; 166():112452. PubMed ID: 32738648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis.
    Cho S; Yang HC; Rhee WJ
    Biosens Bioelectron; 2019 Dec; 146():111749. PubMed ID: 31600625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magneto-Mediated Electrochemical Sensor for Simultaneous Analysis of Breast Cancer Exosomal Proteins.
    An Y; Li R; Zhang F; He P
    Anal Chem; 2020 Apr; 92(7):5404-5410. PubMed ID: 32157871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanozyme-assisted sensitive profiling of exosomal proteins for rapid cancer diagnosis.
    Di H; Mi Z; Sun Y; Liu X; Liu X; Li A; Jiang Y; Gao H; Rong P; Liu D
    Theranostics; 2020; 10(20):9303-9314. PubMed ID: 32802193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection.
    Jin D; Yang F; Zhang Y; Liu L; Zhou Y; Wang F; Zhang GJ
    Anal Chem; 2018 Dec; 90(24):14402-14411. PubMed ID: 30350954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a DNA-AuNP-based satellite network for exosome analysis.
    Gao ML; Yin BC; Ye BC
    Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor.
    Shi D; Huang J; Chuai Z; Chen D; Zhu X; Wang H; Peng J; Wu H; Huang Q; Fu W
    Biosens Bioelectron; 2014 Dec; 62():280-7. PubMed ID: 25022511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strand displacement-triggered G-quadruplex/rolling circle amplification strategy for the ultra-sensitive electrochemical sensing of exosomal microRNAs.
    Tang X; Wang Y; Zhou L; Zhang W; Yang S; Yu L; Zhao S; Chang K; Chen M
    Mikrochim Acta; 2020 Feb; 187(3):172. PubMed ID: 32062754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.