These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34633002)
1. Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using Miura T; Tsunekawa S; Onishi S; Ina T; Wang K; Watanabe G; Hu C; Kondoh H; Kawai T; Yoshida M Phys Chem Chem Phys; 2021 Oct; 23(40):23280-23287. PubMed ID: 34633002 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of Structure-Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. Al Samarai M; Hahn AW; Beheshti Askari A; Cui YT; Yamazoe K; Miyawaki J; Harada Y; Rüdiger O; DeBeer S ACS Appl Mater Interfaces; 2019 Oct; 11(42):38595-38605. PubMed ID: 31523947 [TBL] [Abstract][Full Text] [Related]
3. NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte. Kim B; Oh A; Kabiraz MK; Hong Y; Joo J; Baik H; Choi SI; Lee K ACS Appl Mater Interfaces; 2018 Mar; 10(12):10115-10122. PubMed ID: 29513002 [TBL] [Abstract][Full Text] [Related]
4. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737 [TBL] [Abstract][Full Text] [Related]
5. Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details. Yamada K; Hiue T; Ina T; Wang K; Kondoh H; Sakata Y; Lee YL; Kawai T; Yoshida M Anal Sci; 2020 Jan; 36(1):35-39. PubMed ID: 31761817 [TBL] [Abstract][Full Text] [Related]
6. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. Zhao Y; Wan W; Dongfang N; Triana CA; Douls L; Huang C; Erni R; Iannuzzi M; Patzke GR ACS Nano; 2022 Sep; 16(9):15318-15327. PubMed ID: 36069492 [TBL] [Abstract][Full Text] [Related]
8. Arousing the Reactive Fe Sites in Pyrite (FeS Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996 [TBL] [Abstract][Full Text] [Related]
9. Facile Access to an Active γ-NiOOH Electrocatalyst for Durable Water Oxidation Derived From an Intermetallic Nickel Germanide Precursor. Menezes PW; Yao S; Beltrán-Suito R; Hausmann JN; Menezes PV; Driess M Angew Chem Int Ed Engl; 2021 Feb; 60(9):4640-4647. PubMed ID: 33169889 [TBL] [Abstract][Full Text] [Related]
10. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Trotochaud L; Young SL; Ranney JK; Boettcher SW J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732 [TBL] [Abstract][Full Text] [Related]
11. Recent Progress on Nickel-Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. Chen Y; Rui K; Zhu J; Dou SX; Sun W Chemistry; 2019 Jan; 25(3):703-713. PubMed ID: 30024645 [TBL] [Abstract][Full Text] [Related]
12. Reversible and Irreversible Cation Intercalation in NiFeO Trzesniowski H; Deka N; van der Heijden O; Golnak R; Xiao J; Koper MTM; Seidel R; Mom RV J Phys Chem Lett; 2023 Jan; 14(2):545-551. PubMed ID: 36629512 [TBL] [Abstract][Full Text] [Related]
13. Unraveling the Potential Dependence of Active Structures and Reaction Mechanism of Ni-based MOFs Electrocatalysts for Alkaline OER. Xu W; Tao Y; Zhang H; Zhu J; Shao W; Sun JS; Xia Y; Ha Y; Yang H; Cheng T; Sun X Small; 2024 Dec; 20(49):e2407328. PubMed ID: 39308212 [TBL] [Abstract][Full Text] [Related]
14. Operando X-ray Absorption Spectroscopy as a Powerful Tool for Uncovering Property-Activity Relationships for Oxygen Evolution Transition Metal Oxide Catalysts. Fabbri E; Schmidt TJ Chimia (Aarau); 2024 May; 78(5):320-325. PubMed ID: 38822775 [TBL] [Abstract][Full Text] [Related]
15. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Trześniewski BJ; Diaz-Morales O; Vermaas DA; Longo A; Bras W; Koper MT; Smith WA J Am Chem Soc; 2015 Dec; 137(48):15112-21. PubMed ID: 26544169 [TBL] [Abstract][Full Text] [Related]
16. Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution. Huang J; Li Y; Zhang Y; Rao G; Wu C; Hu Y; Wang X; Lu R; Li Y; Xiong J Angew Chem Int Ed Engl; 2019 Nov; 58(48):17458-17464. PubMed ID: 31550415 [TBL] [Abstract][Full Text] [Related]
18. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry. Gupta N; Segre C; Nickel C; Streb C; Gao D; Glusac KD ACS Appl Mater Interfaces; 2024 Jul; 16(27):35793-35804. PubMed ID: 38949083 [TBL] [Abstract][Full Text] [Related]
19. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038 [TBL] [Abstract][Full Text] [Related]
20. Tuning Dynamically Formed Active Phases and Catalytic Mechanisms of Chala SA; Tsai MC; Olbasa BW; Lakshmanan K; Huang WH; Su WN; Liao YF; Lee JF; Dai H; Hwang BJ ACS Nano; 2021 Sep; 15(9):14996-15006. PubMed ID: 34515484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]