These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34633193)
1. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases. Sekretareva A; Tian S; Gounel S; Mano N; Solomon EI J Am Chem Soc; 2021 Oct; 143(41):17236-17249. PubMed ID: 34633193 [TBL] [Abstract][Full Text] [Related]
2. O Sekretaryova A; Jones SM; Solomon EI J Am Chem Soc; 2019 Jul; 141(28):11304-11314. PubMed ID: 31260290 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. Heppner DE; Kjaergaard CH; Solomon EI J Am Chem Soc; 2014 Dec; 136(51):17788-801. PubMed ID: 25490729 [TBL] [Abstract][Full Text] [Related]
4. Two-Electron Reduction versus One-Electron Oxidation of the Type 3 Pair in the Multicopper Oxidases. Kjaergaard CH; Jones SM; Gounel S; Mano N; Solomon EI J Am Chem Soc; 2015 Jul; 137(27):8783-94. PubMed ID: 26075678 [TBL] [Abstract][Full Text] [Related]
5. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Yoon J; Liboiron BD; Sarangi R; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13609-14. PubMed ID: 17702865 [TBL] [Abstract][Full Text] [Related]
6. Modified reactivity toward O2 in first shell variants of Fet3p: geometric and electronic structure requirements for a functioning trinuclear copper cluster. Kjaergaard CH; Qayyum MF; Augustine AJ; Ziegler L; Kosman DJ; Hodgson KO; Hedman B; Solomon EI Biochemistry; 2013 May; 52(21):3702-11. PubMed ID: 23631422 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer and reaction mechanism of laccases. Jones SM; Solomon EI Cell Mol Life Sci; 2015 Mar; 72(5):869-83. PubMed ID: 25572295 [TBL] [Abstract][Full Text] [Related]
9. Intramolecular Electron Transfer in the Bacterial Two-Domain Multicopper Oxidase mgLAC. Wherland S; Miyazaki K; Pecht I Biochemistry; 2016 May; 55(21):2960-6. PubMed ID: 27126506 [TBL] [Abstract][Full Text] [Related]
10. Molecular origin of rapid versus slow intramolecular electron transfer in the catalytic cycle of the multicopper oxidases. Heppner DE; Kjaergaard CH; Solomon EI J Am Chem Soc; 2013 Aug; 135(33):12212-5. PubMed ID: 23902255 [TBL] [Abstract][Full Text] [Related]
11. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J; Solomon EI J Am Chem Soc; 2007 Oct; 129(43):13127-36. PubMed ID: 17918839 [TBL] [Abstract][Full Text] [Related]
12. Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Macedo LJA; Hassan A; Sedenho GC; Crespilho FN Nat Commun; 2020 Jan; 11(1):316. PubMed ID: 31949281 [TBL] [Abstract][Full Text] [Related]
13. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways. Bello M; Correa-Basurto J; Rudiño-Piñera E J Biomol Struct Dyn; 2014; 32(8):1303-17. PubMed ID: 23859715 [TBL] [Abstract][Full Text] [Related]
14. O2 reduction to H2O by the multicopper oxidases. Solomon EI; Augustine AJ; Yoon J Dalton Trans; 2008 Aug; (30):3921-32. PubMed ID: 18648693 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705 [TBL] [Abstract][Full Text] [Related]
16. New insights into the catalytic active-site structure of multicopper oxidases. Komori H; Sugiyama R; Kataoka K; Miyazaki K; Higuchi Y; Sakurai T Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):772-9. PubMed ID: 24598746 [TBL] [Abstract][Full Text] [Related]
17. Amino acids located in the outer-sphere of the trinuclear copper center in a multicopper oxidase, CueO as the putative electron donor in the four-electron reduction of dioxygen. Sakurai T; Yamamoto M; Ikeno S; Kataoka K Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):997-1003. PubMed ID: 28473295 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Roberts SA; Weichsel A; Grass G; Thakali K; Hazzard JT; Tollin G; Rensing C; Montfort WR Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2766-71. PubMed ID: 11867755 [TBL] [Abstract][Full Text] [Related]
19. Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. Djoko KY; Chong LX; Wedd AG; Xiao Z J Am Chem Soc; 2010 Feb; 132(6):2005-15. PubMed ID: 20088522 [TBL] [Abstract][Full Text] [Related]
20. Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Quintanar L; Stoj C; Taylor AB; Hart PJ; Kosman DJ; Solomon EI Acc Chem Res; 2007 Jun; 40(6):445-52. PubMed ID: 17425282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]