BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 34633752)

  • 1. Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications.
    Zhang F; Sherrell PC; Luo W; Chen J; Li W; Yang J; Zhu M
    Adv Sci (Weinh); 2021 Nov; 8(22):e2102859. PubMed ID: 34633752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage.
    Yan Y; Chen G; She P; Zhong G; Yan W; Guan BY; Yamauchi Y
    Adv Mater; 2020 Nov; 32(44):e2004654. PubMed ID: 32964570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage.
    Fang Y; Luan D; Gao S; Lou XWD
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20102-20118. PubMed ID: 33955137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications.
    Yu L; Wu HB; Lou XW
    Acc Chem Res; 2017 Feb; 50(2):293-301. PubMed ID: 28128931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.
    Guan BY; Yu XY; Wu HB; Lou XWD
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 28960488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
    Wang H; Dai H
    Chem Soc Rev; 2013 Apr; 42(7):3088-113. PubMed ID: 23361617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
    Yu L; Hu H; Wu HB; Lou XW
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28092123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic framework (MOF) composites as promising materials for energy storage applications.
    Peng Y; Xu J; Xu J; Ma J; Bai Y; Cao S; Zhang S; Pang H
    Adv Colloid Interface Sci; 2022 Sep; 307():102732. PubMed ID: 35870249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.
    Wei Q; Xiong F; Tan S; Huang L; Lan EH; Dunn B; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28106303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.
    Xiong P; Zhu J; Zhang L; Wang X
    Nanoscale Horiz; 2016 Sep; 1(5):340-374. PubMed ID: 32260626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications.
    Cai ZX; Wang ZL; Kim J; Yamauchi Y
    Adv Mater; 2019 Mar; 31(11):e1804903. PubMed ID: 30637804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications.
    Sun H; Li J; Liang W; Gong X; Jing A; Yang W; Liu H; Ren S
    Small Methods; 2023 Dec; ():e2301335. PubMed ID: 38037763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.
    Peng L; Zhu Y; Li H; Yu G
    Small; 2016 Dec; 12(45):6183-6199. PubMed ID: 27758041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Architectures based on 2D MXenes and Low-Dimensional Inorganic Nanostructures: Methods, Synergies, and Energy-Related Applications.
    Liu YT; Zhu XD; Pan L
    Small; 2018 Dec; 14(51):e1803632. PubMed ID: 30345656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition Metal Carbide Complex Architectures for Energy-Related Applications.
    Meng T; Cao M
    Chemistry; 2018 Nov; 24(63):16716-16736. PubMed ID: 29959856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of cellular materials for advanced electrochemical energy storage and conversion.
    Tian X; Zhou K
    Nanoscale; 2020 Apr; 12(14):7416-7432. PubMed ID: 32211665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion.
    Yun Q; Lu Q; Zhang X; Tan C; Zhang H
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):626-646. PubMed ID: 28834184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage.
    Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H
    Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Molybdenum Oxides for Rechargeable Batteries.
    Tang K; Farooqi SA; Wang X; Yan C
    ChemSusChem; 2019 Feb; 12(4):755-771. PubMed ID: 30478957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.