These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34633822)
1. Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels. Wang X; Liu M; Jing D; Prezhdo O J Phys Chem Lett; 2021 Oct; 12(41):10099-10105. PubMed ID: 34633822 [TBL] [Abstract][Full Text] [Related]
2. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics. Fu L; Merabia S; Joly L Phys Rev Lett; 2017 Nov; 119(21):214501. PubMed ID: 29219396 [TBL] [Abstract][Full Text] [Related]
3. Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis. Wang X; Liu M; Jing D; Mohamad A; Prezhdo O Nano Lett; 2020 Dec; 20(12):8965-8971. PubMed ID: 33231457 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale spiral flow in a cylindrical channel. Jeon C; Jeong H; Jung Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056324. PubMed ID: 21728664 [TBL] [Abstract][Full Text] [Related]
5. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect. Chen WQ; Sedighi M; Jivkov AP Nanoscale; 2021 Jan; 13(3):1696-1716. PubMed ID: 33427268 [TBL] [Abstract][Full Text] [Related]
6. Thermo-Osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength. Chen WQ; Jivkov AP; Sedighi M ACS Appl Mater Interfaces; 2023 Jul; 15(28):34159-34171. PubMed ID: 37428544 [TBL] [Abstract][Full Text] [Related]
7. Diffusioosmotic flows in slit nanochannels. Qian S; Das B; Luo X J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599 [TBL] [Abstract][Full Text] [Related]
8. Osmotic flow through fully permeable nanochannels. Lee C; Cottin-Bizonne C; Biance AL; Joseph P; Bocquet L; Ybert C Phys Rev Lett; 2014 Jun; 112(24):244501. PubMed ID: 24996091 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Soong CY; Yen TH; Tzeng PY Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036303. PubMed ID: 17930337 [TBL] [Abstract][Full Text] [Related]
10. Nanofluidic Diode for Simple Fluids without Moving Parts. Li L; Mo J; Li Z Phys Rev Lett; 2015 Sep; 115(13):134503. PubMed ID: 26451560 [TBL] [Abstract][Full Text] [Related]
11. Friction between solids and adsorbed fluids is spatially distributed at the nanoscale. Bhatia SK; Nicholson D Langmuir; 2013 Nov; 29(47):14519-26. PubMed ID: 24168469 [TBL] [Abstract][Full Text] [Related]
12. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics. Fu L; Merabia S; Joly L J Phys Chem Lett; 2018 Apr; 9(8):2086-2092. PubMed ID: 29624390 [TBL] [Abstract][Full Text] [Related]
14. Complex coupling between surface charge and thermo-osmotic phenomena. Ouadfel M; De San Féliciano M; Herrero C; Merabia S; Joly L Phys Chem Chem Phys; 2023 Sep; 25(36):24321-24331. PubMed ID: 37668541 [TBL] [Abstract][Full Text] [Related]
15. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system. Kim B; Heo J; Kwon HJ; Cho SJ; Han J; Kim SJ; Lim G ACS Nano; 2013 Jan; 7(1):740-7. PubMed ID: 23244067 [TBL] [Abstract][Full Text] [Related]
16. An optically fabricated gradient nanochannel array to access the translocation dynamics of T4-phage DNA through nanoconfinement. Zhang C; Hou J; Zeng Y; Dai L; Zhao W; Jing G; Sun D; Cao Y; Zhang C Lab Chip; 2023 Aug; 23(17):3811-3819. PubMed ID: 37490010 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of nanoscale droplets on moving surfaces. Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083 [TBL] [Abstract][Full Text] [Related]
18. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
19. Flow regimes and parameter dependence in nanochannel flows. Liu C; Li Z Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036302. PubMed ID: 19905207 [TBL] [Abstract][Full Text] [Related]
20. Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels. Wang Y; Wang C; Zhang Y; Huo F; He H; Zhang S Small; 2019 Jul; 15(29):e1804508. PubMed ID: 30680916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]