These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Yang N; Xu XW; Wang RR; Peng WL; Cai L; Song JM; Li W; Luo X; Niu L; Wang Y; Jin M; Chen L; Luo J; Deng M; Wang L; Pan Q; Liu F; Jackson D; Yang X; Chen LL; Yan J Nat Commun; 2017 Nov; 8(1):1874. PubMed ID: 29187731 [TBL] [Abstract][Full Text] [Related]
5. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. Vallebueno-Estrada M; Hernández-Robles GG; González-Orozco E; Lopez-Valdivia I; Rosales Tham T; Vásquez Sánchez V; Swarts K; Dillehay TD; Vielle-Calzada JP; Montiel R Elife; 2023 Apr; 12():. PubMed ID: 37070964 [TBL] [Abstract][Full Text] [Related]
6. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846 [TBL] [Abstract][Full Text] [Related]
8. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Berube B; Ernst E; Cahn J; Roche B; de Santis Alves C; Lynn J; Scheben A; Grimanelli D; Siepel A; Ross-Ibarra J; Kermicle J; Martienssen RA Nature; 2024 Sep; 633(8029):380-388. PubMed ID: 39112710 [TBL] [Abstract][Full Text] [Related]
9. Gene regulatory effects of a large chromosomal inversion in highland maize. Crow T; Ta J; Nojoomi S; Aguilar-Rangel MR; Torres Rodríguez JV; Gates D; Rellán-Álvarez R; Sawers R; Runcie D PLoS Genet; 2020 Dec; 16(12):e1009213. PubMed ID: 33270639 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous hybridization between maize and teosinte. Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L J Hered; 2007; 98(2):183-7. PubMed ID: 17400586 [TBL] [Abstract][Full Text] [Related]
11. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503 [TBL] [Abstract][Full Text] [Related]
12. Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Le Corre V; Siol M; Vigouroux Y; Tenaillon MI; Délye C Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25618-25627. PubMed ID: 32989136 [TBL] [Abstract][Full Text] [Related]
14. The relevance of gene flow with wild relatives in understanding the domestication process. Moreno-Letelier A; Aguirre-Liguori JA; Piñero D; Vázquez-Lobo A; Eguiarte LE R Soc Open Sci; 2020 Apr; 7(4):191545. PubMed ID: 32431864 [TBL] [Abstract][Full Text] [Related]
15. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Doebley J; Stec A Genetics; 1993 Jun; 134(2):559-70. PubMed ID: 8325489 [TBL] [Abstract][Full Text] [Related]
16. Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Fustier MA; Brandenburg JT; Boitard S; Lapeyronnie J; Eguiarte LE; Vigouroux Y; Manicacci D; Tenaillon MI Mol Ecol; 2017 May; 26(10):2738-2756. PubMed ID: 28256021 [TBL] [Abstract][Full Text] [Related]
17. Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808 [TBL] [Abstract][Full Text] [Related]
18. The interplay of demography and selection during maize domestication and expansion. Wang L; Beissinger TM; Lorant A; Ross-Ibarra C; Ross-Ibarra J; Hufford MB Genome Biol; 2017 Nov; 18(1):215. PubMed ID: 29132403 [TBL] [Abstract][Full Text] [Related]
19. Complex patterns of local adaptation in teosinte. Pyhäjärvi T; Hufford MB; Mezmouk S; Ross-Ibarra J Genome Biol Evol; 2013; 5(9):1594-609. PubMed ID: 23902747 [TBL] [Abstract][Full Text] [Related]
20. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Aguirre-Liguori JA; Gaut BS; Jaramillo-Correa JP; Tenaillon MI; Montes-Hernández S; García-Oliva F; Hearne SJ; Eguiarte LE Mol Ecol; 2019 Jun; 28(11):2814-2830. PubMed ID: 30980686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]