These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34634040)

  • 1. Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis.
    Kosta S; Dauby PC
    PLoS Comput Biol; 2021 Oct; 17(10):e1009469. PubMed ID: 34634040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility.
    Abraham DM; Davis RT; Warren CM; Mao L; Wolska BM; Solaro RJ; Rockman HA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14426-14431. PubMed ID: 27911784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the Frank-Starling Law of the Heart.
    Ribarič S; Kordaš M
    Comput Math Methods Med; 2012; 2012():267834. PubMed ID: 23243461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions.
    Jacob R; Dierberger B; Kissling G
    Eur Heart J; 1992 Nov; 13 Suppl E():7-14. PubMed ID: 1478214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect.
    Warburton DE; Haykowsky MJ; Quinney HA; Blackmore D; Teo KK; Humen DP
    Exp Physiol; 2002 Sep; 87(5):613-22. PubMed ID: 12481936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac efficiency and Starling's Law of the Heart.
    Han JC; Taberner AJ; Loiselle DS; Tran K
    J Physiol; 2022 Oct; 600(19):4265-4285. PubMed ID: 35998082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.
    Niederer SA; Smith NP
    PLoS Comput Biol; 2009 Apr; 5(4):e1000371. PubMed ID: 19390615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cardiac preload and central venous pressure].
    Weyland A; Grüne F
    Anaesthesist; 2009 May; 58(5):506-12. PubMed ID: 19384456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac thin filament regulation and the Frank-Starling mechanism.
    Kobirumaki-Shimozawa F; Inoue T; Shintani SA; Oyama K; Terui T; Minamisawa S; Ishiwata S; Fukuda N
    J Physiol Sci; 2014 Jul; 64(4):221-32. PubMed ID: 24788476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofilament length dependent activation.
    de Tombe PP; Mateja RD; Tachampa K; Ait Mou Y; Farman GP; Irving TC
    J Mol Cell Cardiol; 2010 May; 48(5):851-8. PubMed ID: 20053351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving a century-old conundrum underlying cardiac force-length relations.
    Han JC; Pham T; Taberner AJ; Loiselle DS; Tran K
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H781-H793. PubMed ID: 30707611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frank-Starling mechanism contributes modestly to ventricular performance during atrial fibrillation.
    Popović ZB; Yamada H; Mowrey KA; Zhang Y; Wallick DW; Grimm RA; Thomas JD; Mazgalev TN
    Heart Rhythm; 2004 Oct; 1(4):482-9. PubMed ID: 15851203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation.
    Terui T; Shimamoto Y; Yamane M; Kobirumaki F; Ohtsuki I; Ishiwata S; Kurihara S; Fukuda N
    J Gen Physiol; 2010 Oct; 136(4):469-82. PubMed ID: 20876361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frank-Starling mechanism and short-term adjustment of cardiac flow.
    Chaui-Berlinck JG; Monteiro LHA
    J Exp Biol; 2017 Dec; 220(Pt 23):4391-4398. PubMed ID: 28912258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion.
    Toepfer CN; West TG; Ferenczi MA
    J Physiol; 2016 Sep; 594(18):5237-54. PubMed ID: 27291932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation.
    Konhilas JP; Irving TC; de Tombe PP
    Pflugers Arch; 2002 Dec; 445(3):305-10. PubMed ID: 12466931
    [No Abstract]   [Full Text] [Related]  

  • 18. Historical perspective on heart function: the Frank-Starling Law.
    Sequeira V; van der Velden J
    Biophys Rev; 2015 Dec; 7(4):421-447. PubMed ID: 28510104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Frank-Starling mechanism in vertebrate cardiac myocytes.
    Shiels HA; White E
    J Exp Biol; 2008 Jul; 211(Pt 13):2005-13. PubMed ID: 18552289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels.
    Holubarsch C; Ruf T; Goldstein DJ; Ashton RC; Nickl W; Pieske B; Pioch K; Lüdemann J; Wiesner S; Hasenfuss G; Posival H; Just H; Burkhoff D
    Circulation; 1996 Aug; 94(4):683-9. PubMed ID: 8772688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.