These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34634079)

  • 21. Proton minibeam radiation therapy for treating metastases: A treatment plan study.
    Ortiz R; Belshi R; De Marzi L; Prezado Y
    Med Phys; 2023 Apr; 50(4):2463-2473. PubMed ID: 36604832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Project for the development of the linac based NCT facility in University of Tsukuba.
    Kumada H; Matsumura A; Sakurai H; Sakae T; Yoshioka M; Kobayashi H; Matsumoto H; Kiyanagi Y; Shibata T; Nakashima H
    Appl Radiat Isot; 2014 Jun; 88():211-5. PubMed ID: 24637084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing proton minibeam radiotherapy by interlacing and heterogeneous tumor dose on the basis of calculated clonogenic cell survival.
    Sammer M; Girst S; Dollinger G
    Sci Rep; 2021 Feb; 11(1):3533. PubMed ID: 33574390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dosimetric feasibility study ("proof of concept") of refractory ventricular tachycardia radioablation using proton minibeams.
    Loap P; Giorgi M; Vu-Bezin J; Kirov K; Sampai JM; Prezado Y; Kirova Y
    Cancer Radiother; 2024 Apr; 28(2):195-201. PubMed ID: 38599941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized beam shaping assembly for a 2.1-MeV proton-accelerator-based neutron source for boron neutron capture therapy.
    Torres-Sánchez P; Porras I; Ramos-Chernenko N; Arias de Saavedra F; Praena J
    Sci Rep; 2021 Apr; 11(1):7576. PubMed ID: 33828211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Intensity Proton Accelerator Project in Japan (J-PARC).
    Tanaka S
    Radiat Prot Dosimetry; 2005; 115(1-4):33-43. PubMed ID: 16381679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.
    Kamino Y; Miura S; Kokubo M; Yamashita I; Hirai E; Hiraoka M; Ishikawa J
    Med Phys; 2007 May; 34(5):1797-808. PubMed ID: 17555261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conceptual Design of a Novel Nozzle Combined with a Clinical Proton Linac for Magnetically Focussed Minibeams.
    Schneider T; Patriarca A; Degiovanni A; Gallas M; Prezado Y
    Cancers (Basel); 2021 Sep; 13(18):. PubMed ID: 34572884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of hexagonal-pattern minibeams for spatially fractionated radiotherapy using proton beam scanning.
    Charyyev S; Artz M; Szalkowski G; Chang CW; Stanforth A; Lin L; Zhang R; Wang CC
    Med Phys; 2020 Aug; 47(8):3485-3495. PubMed ID: 32319098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model.
    Girst S; Greubel C; Reindl J; Siebenwirth C; Zlobinskaya O; Walsh DWM; Ilicic K; Aichler M; Walch A; Wilkens JJ; Multhoff G; Dollinger G; Schmid TE
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):234-241. PubMed ID: 26692028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical aspects of proton minibeam radiation therapy: Minibeam generation and delivery.
    Schneider T
    Phys Med; 2022 Aug; 100():64-71. PubMed ID: 35750002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sharp dose profiles for high precision proton therapy using strongly focused proton beams.
    Reaz F; Sjobak KN; Malinen E; Edin NFJ; Adli E
    Sci Rep; 2022 Nov; 12(1):18919. PubMed ID: 36344543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medical X-band linear accelerator for high-precision radiotherapy.
    Lee YS; Kim S; Kim GJ; Lee JH; Kim IS; Kim JI; Shin KY; Seol Y; Oh T; An NY; Lee J; Hwang J; Oh Y; Kang YN
    Med Phys; 2021 Sep; 48(9):5327-5342. PubMed ID: 34224166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a proton microbeam of the PEFP.
    Kim KR; Kim YH; Chang JH; Kim KY
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02C720. PubMed ID: 18315273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary shielding assessment for the 100 MeV proton linac (KOMAC).
    Lee YO; Cho YS; Chang J
    Radiat Prot Dosimetry; 2005; 115(1-4):569-72. PubMed ID: 16381787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and characterisation of a minibeam collimator utilising Monte Carlo simulation and a clinical linear accelerator.
    Carver A; Baker S; Dumbill A; Horton S; Green S
    Phys Med Biol; 2024 Jun; 69(13):. PubMed ID: 38759691
    [No Abstract]   [Full Text] [Related]  

  • 38. Shielding design calculations for beam dump facility of KOMAC.
    Cho YS; Lee YO; Chang J
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):259-63. PubMed ID: 16604640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Photons and protons in radiation therapy. The prospects for developing a proton therapy based on a new Russian accelerator].
    Gogin EE; Benetskiĭ BA; Kravchuk LV; Tiflov VV
    Ter Arkh; 1996; 68(10):31-6. PubMed ID: 9026939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.