These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 34634120)

  • 1. Weaving of bacterial cellulose by the Bcs secretion systems.
    Abidi W; Torres-Sánchez L; Siroy A; Krasteva PV
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34634120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Multitasking of the c-di-GMP-Sensing Cellulose Secretion Regulator BcsE.
    Zouhir S; Abidi W; Caleechurn M; Krasteva PV
    mBio; 2020 Aug; 11(4):. PubMed ID: 32788377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis.
    Omadjela O; Narahari A; Strumillo J; Mélida H; Mazur O; Bulone V; Zimmer J
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17856-61. PubMed ID: 24127606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the structure and assembly of a bacterial cellulose secretion system.
    Krasteva PV; Bernal-Bayard J; Travier L; Martin FA; Kaminski PA; Karimova G; Fronzes R; Ghigo JM
    Nat Commun; 2017 Dec; 8(1):2065. PubMed ID: 29234007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.
    Römling U; Galperin MY
    Trends Microbiol; 2015 Sep; 23(9):545-57. PubMed ID: 26077867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP.
    Morgan JL; McNamara JT; Zimmer J
    Nat Struct Mol Biol; 2014 May; 21(5):489-96. PubMed ID: 24704788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG.
    Whitfield GB; Marmont LS; Ostaszewski A; Rich JD; Whitney JC; Parsek MR; Harrison JJ; Howell PL
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 31988082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic snapshot of cellulose synthesis and membrane translocation.
    Morgan JL; Strumillo J; Zimmer J
    Nature; 2013 Jan; 493(7431):181-6. PubMed ID: 23222542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell-cell aggregation.
    Hu L; Grim CJ; Franco AA; Jarvis KG; Sathyamoorthy V; Kothary MH; McCardell BA; Tall BD
    Food Microbiol; 2015 Dec; 52():97-105. PubMed ID: 26338122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local c-di-GMP Signaling in the Control of Synthesis of the E. coli Biofilm Exopolysaccharide pEtN-Cellulose.
    Richter AM; Possling A; Malysheva N; Yousef KP; Herbst S; von Kleist M; Hengge R
    J Mol Biol; 2020 Jul; 432(16):4576-4595. PubMed ID: 32534064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.
    Castiblanco LF; Sundin GW
    Mol Plant Pathol; 2018 Jan; 19(1):90-103. PubMed ID: 27753193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.
    Moradali MF; Ghods S; Rehm BHA
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri.
    Bassis CM; Visick KL
    J Bacteriol; 2010 Mar; 192(5):1269-78. PubMed ID: 20061475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture and regulation of an enterobacterial cellulose secretion system.
    Abidi W; Zouhir S; Caleechurn M; Roche S; Krasteva PV
    Sci Adv; 2021 Jan; 7(5):. PubMed ID: 33563593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial crystalline cellulose secretion via a supramolecular BcsHD scaffold.
    Abidi W; Decossas M; Torres-Sánchez L; Puygrenier L; Létoffé S; Ghigo JM; Krasteva PV
    Sci Adv; 2022 Dec; 8(50):eadd1170. PubMed ID: 36525496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines.
    Low KE; Howell PL
    Curr Opin Struct Biol; 2018 Dec; 53():32-44. PubMed ID: 29843050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-Responsive Diguanylate Cyclase CasA Drives Cellulose-Dependent Biofilm Formation and Inhibits Motility in Vibrio fischeri.
    Tischler AH; Vanek ME; Peterson N; Visick KL
    mBio; 2021 Dec; 12(6):e0257321. PubMed ID: 34749532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium.
    Ahmad I; Lamprokostopoulou A; Le Guyon S; Streck E; Barthel M; Peters V; Hardt WD; Römling U
    PLoS One; 2011; 6(12):e28351. PubMed ID: 22164276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate.
    Poulin MB; Kuperman LL
    Front Microbiol; 2021; 12():730980. PubMed ID: 34566936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cellulose production by heterologous expression of bcsA and B genes from Gluconacetobacterxylinus in E. coli Nissle 1917.
    Sajadi E; Fatemi SS; Babaeipour V; Deldar AA; Yakhchali B; Anvar MS
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):2023-2034. PubMed ID: 31489493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.