BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34634332)

  • 1. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin.
    Zheng D; Huang C; Li B; Zhu X; Liu R; Zhao H
    Int J Biol Macromol; 2021 Dec; 192():471-478. PubMed ID: 34634332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Soy β-Conglycinin Core-Shell Nanoparticles As Outstanding Ecofriendly Nanocarriers for Curcumin.
    Liu LL; Liu PZ; Li XT; Zhang N; Tang CH
    J Agric Food Chem; 2019 Jun; 67(22):6292-6301. PubMed ID: 31117486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation.
    Fan L; Lu Y; Ouyang XK; Ling J
    Int J Biol Macromol; 2021 Feb; 169():194-205. PubMed ID: 33340634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.
    Teng Z; Luo Y; Wang Q
    J Agric Food Chem; 2012 Mar; 60(10):2712-20. PubMed ID: 22352467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery.
    Wang S; Lu Y; Ouyang XK; Ling J
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1468-1474. PubMed ID: 33058971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.
    Chen FP; Ou SY; Tang CH
    J Agric Food Chem; 2016 Jun; 64(24):5053-9. PubMed ID: 27243766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of native and modified banana starch nanoparticles as vehicles for curcumin.
    Acevedo-Guevara L; Nieto-Suaza L; Sanchez LT; Pinzon MI; Villa CC
    Int J Biol Macromol; 2018 May; 111():498-504. PubMed ID: 29337095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization, and performance analysis of starch-based nanomicelles.
    Kou Z; Dou D; Lan L; Zhang J; Lan P; Yu Q; Zhang Y
    Int J Biol Macromol; 2020 Feb; 145():655-662. PubMed ID: 31883889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of starch nanoparticles as host materials for encapsulation of curcumin: Effect of citric acid modification.
    Miskeen S; An YS; Kim JY
    Int J Biol Macromol; 2021 Jul; 183():1-11. PubMed ID: 33901554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-encapsulation of curcumin using soy protein hydrolysates - tannic acid complexes regulated by photocatalysis: a study on the storage stability and
    Jin B; Zhou X; Zhou S; Liu Y; Zheng Z; Liang Y; Chen S
    J Microencapsul; 2019 Jun; 36(4):385-398. PubMed ID: 31238757
    [No Abstract]   [Full Text] [Related]  

  • 11. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin.
    Li XM; Wu ZZ; Zhang B; Pan Y; Meng R; Chen HQ
    Food Chem; 2019 Sep; 293():197-203. PubMed ID: 31151601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties.
    Li Z; Lin Q; McClements DJ; Fu Y; Xie H; Li T; Chen G
    Food Chem; 2021 Sep; 355():129686. PubMed ID: 33799264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.
    Wang F; Yang Y; Ju X; Udenigwe CC; He R
    J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A green approach for preparation of polyacrylic acid/starch incorporated with titanium dioxide nanocomposite as a biocompatible platform for curcumin delivery to breast cancer cells.
    Pourmadadi M; Tajiki A; Abdouss M
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124785. PubMed ID: 37169052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of phenolic acids on the storage and digestion stability of curcumin emulsions based on soy protein-pectin-phenolic acids ternary nano-complexes.
    Jin B; Zhou X; Zhou S; Liu Y; Guan R; Zheng Z; Liang Y
    J Microencapsul; 2019 Nov; 36(7):622-634. PubMed ID: 31478411
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles.
    Saikia C; Das MK; Ramteke A; Maji TK
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1121-1132. PubMed ID: 27664928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.
    El-Naggar ME; El-Rafie MH; El-sheikh MA; El-Feky GS; Hebeish A
    Int J Biol Macromol; 2015 Nov; 81():718-29. PubMed ID: 26358550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application.
    Yang J; Li F; Li M; Zhang S; Liu J; Liang C; Sun Q; Xiong L
    Carbohydr Polym; 2017 Oct; 173():223-232. PubMed ID: 28732861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles.
    Feng R; Song Z; Zhai G
    Int J Nanomedicine; 2012; 7():4089-98. PubMed ID: 22888245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.