These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34634516)

  • 1. Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation.
    Mumford KG; Martin EJ; Kueper BH
    J Contam Hydrol; 2021 Dec; 243():103892. PubMed ID: 34634516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.
    Munholland JL; Mumford KG; Kueper BH
    J Contam Hydrol; 2016 Jan; 184():14-24. PubMed ID: 26638038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.
    Hegele PR; Mumford KG
    J Contam Hydrol; 2014 Sep; 165():24-36. PubMed ID: 25084057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of DNAPL waste in subsurface clayey lenses and layers.
    Ayral-Çınar D; Demond AH
    J Contam Hydrol; 2020 Feb; 229():103579. PubMed ID: 31818434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
    Schroth MH; Oostrom M; Wietsma TW; Istok JD
    J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining effective diffusion coefficients of chlorohydrocarbons in natural clays: Unique results from highly resolved controlled release field experiments.
    Parker BL; Cherry JA; Wanner P
    J Contam Hydrol; 2022 Oct; 250():104075. PubMed ID: 36115173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.
    Ayral-Cinar D; Demond AH
    J Contam Hydrol; 2017 Dec; 207():1-7. PubMed ID: 29074266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions.
    Martin EJ; Kueper BH
    J Contam Hydrol; 2011 Nov; 126(3-4):291-300. PubMed ID: 22115093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphase flow and transport in fractured clay/sand sequences.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2001 Sep; 51(1-2):41-62. PubMed ID: 11530926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenhanced back diffusion and population dynamics of Dehalococcoides mccartyi strains in heterogeneous porous media.
    Hnatko JP; Yang L; Pennell KD; Abriola LM; Cápiro NL
    Chemosphere; 2020 Sep; 254():126842. PubMed ID: 32957273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory study of creosote removal from sand at elevated temperatures.
    Hicknell BN; Mumford KG; Kueper BH
    J Contam Hydrol; 2018 Dec; 219():40-49. PubMed ID: 30396790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study.
    Mahmoodlu MG; Pontedeiro EM; Pérez Guerrero JS; Raoof A; Majid Hassanizadeh S; van Genuchten MT
    J Contam Hydrol; 2017 Jan; 196():43-51. PubMed ID: 27993467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling.
    Philips J; Miroshnikov A; Haest PJ; Springael D; Smolders E
    J Contam Hydrol; 2014 Dec; 170():28-38. PubMed ID: 25306502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones.
    Berns EC; Sanford RA; Valocchi AJ; Strathmann TJ; Schaefer CE; Werth CJ
    J Contam Hydrol; 2019 Jul; 224():103480. PubMed ID: 31006532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid.
    Philips J; Springael D; Smolders E
    Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.