These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34634724)

  • 1. Copper leaching from recreational vessel antifouling paints in freshwater: A Berlin case study.
    Schröder L; Hellweger F; Putschew A
    J Environ Manage; 2022 Jan; 301():113895. PubMed ID: 34634724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling paints leach copper in excess - study of metal release rates and efficacy along a salinity gradient.
    Lagerström M; Ytreberg E; Wiklund AE; Granhag L
    Water Res; 2020 Nov; 186():116383. PubMed ID: 32916622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A baseline of copper associated with antifouling paint in marinas within a large fjord estuary.
    Hobbs WO; McCall M; Lanksbury J; Seiders K; Sandvik P; Jones M; Chuhran H; Momohara D; Norton D
    Mar Pollut Bull; 2022 May; 178():113547. PubMed ID: 35339866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.
    Ytreberg E; Bighiu MA; Lundgren L; Eklund B
    Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas.
    Lagerström M; Ferreira J; Ytreberg E; Eriksson-Wiklund AK
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27674-27687. PubMed ID: 32394257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential disruptive effects of copper-based antifouling paints on the biodiversity of coastal macrofouling communities.
    Cima F; Varello R
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8633-8646. PubMed ID: 35001280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu isotope records of Cu-based antifouling paints in sediment core profiles from the largest European Marina, The Port Camargue.
    Briant N; Freydier R; Araújo DF; Delpoux S; Elbaz-Poulichet F
    Sci Total Environ; 2022 Nov; 849():157885. PubMed ID: 35944646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.
    Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E
    Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofouling of leisure boats as a source of metal pollution.
    Bighiu MA; Eriksson-Wiklund AK; Eklund B
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):997-1006. PubMed ID: 27766522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental fate of the antifouling compound zinc pyrithione in seawater.
    Grunnet KS; Dahllöf I
    Environ Toxicol Chem; 2005 Dec; 24(12):3001-6. PubMed ID: 16445078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.
    Pelletier É; Bonnet C; Lemarchand K
    Int J Mol Sci; 2009 Jul; 10(7):3209-3223. PubMed ID: 19742133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocides in antifouling paint formulations currently registered for use.
    Paz-Villarraga CA; Castro ÍB; Fillmann G
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30090-30101. PubMed ID: 34997484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.
    Pérez M; García M; Blustein G
    Mar Environ Res; 2015 Aug; 109():177-84. PubMed ID: 26210408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inputs of antifouling paint-derived dichlorodiphenyltrichloroethanes (DDTs) to a typical mariculture zone (South China): potential impact on aquafarming environment.
    Yu HY; Shen RL; Liang Y; Cheng H; Zeng EY
    Environ Pollut; 2011 Dec; 159(12):3700-5. PubMed ID: 21835519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal record of copper-based antifouling paints in sediment core following marina construction and operation.
    Cunha B; Garnier J; Araújo D; Tonhá M; Souto-Oliveira CE; Ruiz I; Feitas E Silva FH; Almeida T; Freydier R; Seyler P; Babinski M
    Mar Pollut Bull; 2024 Jul; 204():116534. PubMed ID: 38850759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition.
    Fujita DS; Takeda AM; Coutinho R; Fernandes FC
    Braz J Biol; 2015 Nov; 75(4 Suppl 1):S70-8. PubMed ID: 26628222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Managing the use of copper-based antifouling paints.
    Srinivasan M; Swain GW
    Environ Manage; 2007 Mar; 39(3):423-41. PubMed ID: 17253094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental risk assessment of using antifouling paints on pleasure crafts in European Union waters.
    Ytreberg E; Lagerström M; Nöu S; Wiklund AE
    J Environ Manage; 2021 Mar; 281():111846. PubMed ID: 33401119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.