These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34635273)
1. Mycobacterium tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. Zhang J; He F Talanta; 2022 Jan; 236():122902. PubMed ID: 34635273 [TBL] [Abstract][Full Text] [Related]
2. The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Zhang J; Huang J; He F Biosens Bioelectron; 2019 Aug; 138():111322. PubMed ID: 31112916 [TBL] [Abstract][Full Text] [Related]
3. Mycobacterium tuberculosis strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. Zhang X; Feng Y; Duan S; Su L; Zhang J; He F ACS Sens; 2019 Apr; 4(4):849-855. PubMed ID: 30900450 [TBL] [Abstract][Full Text] [Related]
4. Highly electrically conductive two-dimensional Ti Zhang J; Li Y; Duan S; He F Anal Chim Acta; 2020 Aug; 1123():9-17. PubMed ID: 32507244 [TBL] [Abstract][Full Text] [Related]
5. Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification. Zhang J; Yang H; Liu W; Wen H; He F Anal Chim Acta; 2022 Jan; 1190():339266. PubMed ID: 34857142 [TBL] [Abstract][Full Text] [Related]
6. Rapid bacteria electrochemical sensor based on cascade amplification of 3D DNA walking machine and toehold-mediated strand displacement. Zhang J; Liu W; Li J; Lu K; Wen H; Ren J Talanta; 2022 Nov; 249():123646. PubMed ID: 35688077 [TBL] [Abstract][Full Text] [Related]
7. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Xiang Y; Zhu X; Huang Q; Zheng J; Fu W Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527 [TBL] [Abstract][Full Text] [Related]
8. Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Chen Y; Guo S; Zhao M; Zhang P; Xin Z; Tao J; Bai L Biosens Bioelectron; 2018 Nov; 119():215-220. PubMed ID: 30138865 [TBL] [Abstract][Full Text] [Related]
9. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Liu C; Jiang D; Xiang G; Liu L; Liu F; Pu X Analyst; 2014 Nov; 139(21):5460-5. PubMed ID: 25171135 [TBL] [Abstract][Full Text] [Related]
10. Detection of non-amplified Mycobacterium tuberculosis genomic DNA using piezoelectric DNA-based biosensors. Kaewphinit T; Santiwatanakul S; Promptmas C; Chansiri K Sensors (Basel); 2010; 10(3):1846-58. PubMed ID: 22294903 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Torres-Chavolla E; Alocilja EC Biosens Bioelectron; 2011 Jul; 26(11):4614-8. PubMed ID: 21616654 [TBL] [Abstract][Full Text] [Related]
12. A signal-on electrochemical DNA biosensor based on exonuclease III-assisted recycling amplification. Yu X; Jiang B; Wang L Anal Methods; 2022 Dec; 14(48):5041-5046. PubMed ID: 36448304 [TBL] [Abstract][Full Text] [Related]
13. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720 [TBL] [Abstract][Full Text] [Related]
14. Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Zhang J; Wang J; Zhang X; He F Biosens Bioelectron; 2018 Oct; 118():9-15. PubMed ID: 30053616 [TBL] [Abstract][Full Text] [Related]
15. A facile signal-on electrochemical DNA sensing platform for ultrasensitive detection of pathogenic bacteria based on Exo III-assisted autonomous multiple-cycle amplification. Pei Q; Song X; Liu S; Wang J; Leng X; Cui X; Yu J; Wang Y; Huang J Analyst; 2019 May; 144(9):3023-3029. PubMed ID: 30900712 [TBL] [Abstract][Full Text] [Related]
16. Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Hatami Z; Ragheb E; Jalali F; Tabrizi MA; Shamsipur M Bioelectrochemistry; 2020 Jun; 133():107458. PubMed ID: 32006859 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Prabowo BA; Purwidyantri A; Liu B; Lai HC; Liu KC Nanotechnology; 2021 Feb; 32(9):095503. PubMed ID: 33232941 [TBL] [Abstract][Full Text] [Related]
18. Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Rizi KS; Hatamluyi B; Rezayi M; Meshkat Z; Sankian M; Ghazvini K; Farsiani H; Aryan E Talanta; 2021 May; 226():122099. PubMed ID: 33676656 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Bai L; Chen Y; Liu X; Zhou J; Cao J; Hou L; Guo S Anal Chim Acta; 2019 Nov; 1080():75-83. PubMed ID: 31409477 [TBL] [Abstract][Full Text] [Related]
20. A gold nanoparticle-based colorimetric mercury(II) biosensor using a DNA probe with phosphorothioate RNA modification and exonuclease III-assisted signal amplification. Xing Y; Zhu Q; Zhou X; Qi P Mikrochim Acta; 2020 Mar; 187(4):214. PubMed ID: 32162015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]