BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34635691)

  • 1. Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option.
    Yamazaki A; Yamakawa S; Morino Y; Sasakura Y; Wada H
    Sci Rep; 2021 Oct; 11(1):20111. PubMed ID: 34635691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity.
    Erkenbrack EM; Thompson JR
    Commun Biol; 2019; 2():160. PubMed ID: 31069269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
    Sharma T; Ettensohn CA
    Development; 2010 Apr; 137(7):1149-57. PubMed ID: 20181745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo.
    Tarsis K; Gildor T; Morgulis M; Ben-Tabou de-Leon S
    Dev Dyn; 2022 Aug; 251(8):1322-1339. PubMed ID: 35403290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation.
    Morgulis M; Winter MR; Shternhell L; Gildor T; Ben-Tabou de-Leon S
    Dev Biol; 2021 May; 473():80-89. PubMed ID: 33577829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development.
    Cary GA; McCauley BS; Zueva O; Pattinato J; Longabaugh W; Hinman VF
    Nat Commun; 2020 Dec; 11(1):6235. PubMed ID: 33277483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata.
    Hinman VF; Davidson EH
    Gene Expr Patterns; 2003 Aug; 3(4):419-22. PubMed ID: 12915304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.