BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34635778)

  • 41. Influence of Dimethyl Sulfoxide as Processing Additive for Improving Efficiency of Polymer Solar Cells.
    Yang BY; He DW; Zhuo ZL; Wang YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):287-92. PubMed ID: 30221897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.
    Kumar N; Dutta V
    J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of Sb
    Mkawi EM; Al-Hadeethi Y; Bazuhair RS; Yousef AS; Shalaan E; Arkook B; Abdeldaiem AM; Almalki R; Bekyarova E
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).
    Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J
    Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembled all-conjugated block copolymer as an effective hole conductor for solid-state dye-sensitized solar cells.
    Chen WC; Lee YH; Chen CY; Kau KC; Lin LY; Dai CA; Wu CG; Ho KC; Wang JK; Wang L
    ACS Nano; 2014 Feb; 8(2):1254-62. PubMed ID: 24455966
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Charge carrier transport and photogeneration in P3HT:PCBM photovoltaic blends.
    Laquai F; Andrienko D; Mauer R; Blom PW
    Macromol Rapid Commun; 2015 Jun; 36(11):1001-25. PubMed ID: 25940132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells.
    Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells.
    Mu S; Ye Q; Zhang X; Huang S; You J
    Front Optoelectron; 2020 Sep; 13(3):265-271. PubMed ID: 36641573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exceptional photoconductivity of poly(3-hexylthiophene) fibers through in situ encapsulation of molybdenum disulfide quantum dots.
    Nair V; Kumar A; Subramaniam C
    Nanoscale; 2018 Jun; 10(22):10395-10402. PubMed ID: 29845146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers.
    Wang Y; Ohkita H; Benten H; Ito S
    Phys Chem Chem Phys; 2015 Oct; 17(40):27217-24. PubMed ID: 26418363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced performance of P3HT/TiO2 bilayer heterojunction photovoltaic device having gold nanoparticles in the donor layer.
    Su YW; Yeh JY; Tsai HC; Tsiang RC
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10027-35. PubMed ID: 22413341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells.
    Li F; Chen C; Tan F; Yue G; Shen L; Zhang W
    Nanoscale Res Lett; 2014; 9(1):240. PubMed ID: 24936158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermally Stable Inorganic CsPbI
    Heo JH; Kim DH; Park JK; Choi YK; Lee DS; Im SH
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43066-43074. PubMed ID: 31657896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells.
    Neo DC; Zhang N; Tazawa Y; Jiang H; Hughes GM; Grovenor CR; Assender HE; Watt AA
    ACS Appl Mater Interfaces; 2016 May; 8(19):12101-8. PubMed ID: 27090378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells.
    Sadoughi G; Sivaram V; Gunning R; Docampo P; Bruder I; Pschirer N; Irajizad A; Snaith HJ
    Phys Chem Chem Phys; 2013 Feb; 15(6):2075-80. PubMed ID: 23288145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Powder Pressed Cuprous Iodide (CuI) as A Hole Transporting Material for Perovskite Solar Cells.
    Uthayaraj S; Karunarathne DGBC; Kumara GRA; Murugathas T; Rasalingam S; Rajapakse RMG; Ravirajan P; Velauthapillai D
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Light trapping and power conversion efficiency of P3HT : nano Si hybrid solar cells.
    Vinoth M; Arunmetha S; Sridharpanday M; Karthik S; Rajendran V
    RSC Adv; 2018 Oct; 8(61):35162-35169. PubMed ID: 35547071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Si-nanocrystal/P3HT hybrid films with a 50- and 12-fold enhancement of hole mobility and density: films prepared by successive drop casting.
    Kajiya D; Saitow K
    Nanoscale; 2015 Oct; 7(38):15780-8. PubMed ID: 26355280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.