These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34635838)

  • 1. Multiscale and integrative single-cell Hi-C analysis with Higashi.
    Zhang R; Zhou T; Ma J
    Nat Biotechnol; 2022 Feb; 40(2):254-261. PubMed ID: 34635838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
    Zhang R; Zhou T; Ma J
    Cell Syst; 2022 Oct; 13(10):798-807.e6. PubMed ID: 36265466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3D Genome Structure of Single Cells.
    Zhou T; Zhang R; Ma J
    Annu Rev Biomed Data Sci; 2021 Jul; 4():21-41. PubMed ID: 34465168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scGHOST: identifying single-cell 3D genome subcompartments.
    Xiong K; Zhang R; Ma J
    Nat Methods; 2024 May; 21(5):814-822. PubMed ID: 38589516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering.
    Zheng J; Yang Y; Dai Z
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38040494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scGHOST: Identifying single-cell 3D genome subcompartments.
    Xiong K; Zhang R; Ma J
    bioRxiv; 2023 May; ():. PubMed ID: 37292994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
    Wang F; Alinejad-Rokny H; Lin J; Gao T; Chen X; Zheng Z; Meng L; Li X; Wong KC
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303502. PubMed ID: 37816141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scGAD: single-cell gene associating domain scores for exploratory analysis of scHi-C data.
    Shen S; Zheng Y; Keleş S
    Bioinformatics; 2022 Jul; 38(14):3642-3644. PubMed ID: 35652733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders.
    Liu T; Wang Z
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation.
    Zhou J; Ma J; Chen Y; Cheng C; Bao B; Peng J; Sejnowski TJ; Dixon JR; Ecker JR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14011-14018. PubMed ID: 31235599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
    Kim HJ; Yardımcı GG; Bonora G; Ramani V; Liu J; Qiu R; Lee C; Hesson J; Ware CB; Shendure J; Duan Z; Noble WS
    PLoS Comput Biol; 2020 Sep; 16(9):e1008173. PubMed ID: 32946435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised embedding of single-cell Hi-C data.
    Liu J; Lin D; Yardimci GG; Noble WS
    Bioinformatics; 2018 Jul; 34(13):i96-i104. PubMed ID: 29950005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scHi-CSim: a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking.
    Fan S; Dang D; Ye Y; Zhang SW; Gao L; Zhang S
    J Mol Cell Biol; 2023 Jun; 15(1):. PubMed ID: 36708167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression.
    Murtaza G; Butaney B; Wagner J; Singh R
    Bioinformatics; 2024 Jun; 40(Supplement_1):i490-i500. PubMed ID: 38940151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeDoc2 Identifies and Characterizes the Hierarchy and Dynamics of Chromatin TAD-Like Domains in the Single Cells.
    Li A; Zeng G; Wang H; Li X; Zhang Z
    Adv Sci (Weinh); 2023 Jul; 10(20):e2300366. PubMed ID: 37162225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data.
    Shi Z; Wu H
    Comput Biol Med; 2024 May; 173():108336. PubMed ID: 38513390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells.
    Lee DS; Luo C; Zhou J; Chandran S; Rivkin A; Bartlett A; Nery JR; Fitzpatrick C; O'Connor C; Dixon JR; Ecker JR
    Nat Methods; 2019 Oct; 16(10):999-1006. PubMed ID: 31501549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.