These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34635899)

  • 1. Conquering residual light absorption in the transmissive states of organic electrochromic materials.
    Österholm AM; Nhon L; Shen DE; Dejneka AM; Tomlinson AL; Reynolds JR
    Mater Horiz; 2022 Jan; 9(1):252-260. PubMed ID: 34635899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Design Paradigm for Color Control in Anodically Coloring Electrochromic Molecules.
    Christiansen DT; Tomlinson AL; Reynolds JR
    J Am Chem Soc; 2019 Mar; 141(9):3859-3862. PubMed ID: 30794389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completing the color palette with spray-processable polymer electrochromics.
    Dyer AL; Thompson EJ; Reynolds JR
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1787-95. PubMed ID: 21495668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes.
    Vasilyeva SV; Unur E; Walczak RM; Donoghue EP; Rinzler AG; Reynolds JR
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2288-97. PubMed ID: 20355864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guiding synthetic targets of anodically coloring electrochromes through density functional theory.
    Nhon L; Wilkins R; Reynolds JR; Tomlinson A
    J Chem Phys; 2021 Feb; 154(5):054110. PubMed ID: 33557540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material strategies for black-to-transmissive window-type polymer electrochromic devices.
    Vasilyeva SV; Beaujuge PM; Wang S; Babiarz JE; Ballarotto VW; Reynolds JR
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1022-32. PubMed ID: 21395243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. True Blue Through Oxidation-A Thiaazulenic Heterophenoquinone as Electrochrome.
    Intorp SN; Kushida S; Dmitrieva E; Popov AA; Rominger F; Freudenberg J; Hinkel F; Bunz UHF
    Chemistry; 2019 Apr; 25(21):5412-5415. PubMed ID: 30724396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorless-to-Black Electrochromism from Binary Electrochromes toward Multifunctional Displays.
    Yu X; Chang M; Chen W; Liang D; Lu X; Zhou G
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39505-39514. PubMed ID: 32805883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome.
    Beaujuge PM; Ellinger S; Reynolds JR
    Nat Mater; 2008 Oct; 7(10):795-9. PubMed ID: 18758455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application.
    Hao Q; Li ZJ; Lu C; Sun B; Zhong YW; Wan LJ; Wang D
    J Am Chem Soc; 2019 Dec; 141(50):19831-19838. PubMed ID: 31744289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.
    Laurenti M; Bianco S; Castellino M; Garino N; Virga A; Pirri CF; Mandracci P
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8032-42. PubMed ID: 26977891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode.
    Zhang S; Li Y; Zhang T; Cao S; Yao Q; Lin H; Ye H; Fisher A; Lee JY
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48062-48070. PubMed ID: 31790202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorless to Neutral Color Electrochromic Devices Based on Asymmetric Viologens.
    Alesanco Y; Viñuales A; Cabañero G; Rodriguez J; Tena-Zaera R
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29619-29627. PubMed ID: 27723968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-Synthetic Color Tuning of the Ultra-Effective and Highly Stable Surface-Confined Electrochromic Monolayer: Shades of Green for Camouflage Materials.
    Laschuk NO; Ebralidze II; Easton EB; Zenkina OV
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39573-39583. PubMed ID: 34378920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Bleaching Behaviors in Black-to-Transmissive Electrochromic Polymer Thin Films.
    He J; You L; Mei J
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34122-34130. PubMed ID: 28889745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochromic painter's palette: color mixing via solution co-processing.
    Bulloch RH; Kerszulis JA; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1406-12. PubMed ID: 25580827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes.
    Palenzuela J; Viñuales A; Odriozola I; Cabañero G; Grande HJ; Ruiz V
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14562-7. PubMed ID: 25090050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A trilayer film approach to multicolor electrochromism.
    Matsui J; Kikuchi R; Miyashita T
    J Am Chem Soc; 2014 Jan; 136(3):842-5. PubMed ID: 24380502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear.
    Österholm AM; Shen DE; Kerszulis JA; Bulloch RH; Kuepfert M; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1413-21. PubMed ID: 25575379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the broad CMY subtractive primary color gamut using a dual-active electrochromic device.
    Bulloch RH; Kerszulis JA; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2014 May; 6(9):6623-30. PubMed ID: 24746185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.