These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34636143)

  • 21. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.
    McDermott ME; DeGroote LW
    Glob Chang Biol; 2016 Oct; 22(10):3304-19. PubMed ID: 27195453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.
    Williams CM; Ragland GJ; Betini G; Buckley LB; Cheviron ZA; Donohue K; Hereford J; Humphries MM; Lisovski S; Marshall KE; Schmidt PS; Sheldon KS; Varpe Ø; Visser ME
    Integr Comp Biol; 2017 Nov; 57(5):921-933. PubMed ID: 29045649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate effects on late-season flight times of Massachusetts butterflies.
    Zipf L; Williams EH; Primack RB; Stichter S
    Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenological sensitivity to temperature mediates herbivory.
    Meineke EK; Davis CC; Davies TJ
    Glob Chang Biol; 2021 Jun; 27(11):2315-2327. PubMed ID: 33735502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intra- and interspecific variation in the responses of insect phenology to climate.
    Gutiérrez D; Wilson RJ
    J Anim Ecol; 2021 Jan; 90(1):248-259. PubMed ID: 32961581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism.
    Kong JD; Hoffmann AA; Kearney MR
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180547. PubMed ID: 31203762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climatic warming increases voltinism in European butterflies and moths.
    Altermatt F
    Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change.
    Cassidy VA; Asaro C; McCarty EP
    J Econ Entomol; 2022 Oct; 115(5):1331-1341. PubMed ID: 35552738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change.
    Altermatt F
    Ecol Lett; 2010 Dec; 13(12):1475-84. PubMed ID: 20937056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of experimental warming on the timing of a plant-insect herbivore interaction.
    Kharouba HM; Vellend M; Sarfraz RM; Myers JH
    J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology.
    Park JS; Post E
    PLoS Biol; 2022 Dec; 20(12):e3001952. PubMed ID: 36574457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data.
    Larsen EA; Belitz MW; Guralnick RP; Ries L
    Sci Rep; 2022 Aug; 12(1):13370. PubMed ID: 35927297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using insect natural history collections to study global change impacts: challenges and opportunities.
    Kharouba HM; Lewthwaite JMM; Guralnick R; Kerr JT; Vellend M
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anthropogenic Alteration of Flow, Temperature, and Light as Life-History Cues in Stream Ecosystems.
    Perkin EK; Wilson MJ
    Integr Comp Biol; 2021 Oct; 61(3):1134-1146. PubMed ID: 33871033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climate change shifts the timing of nutritional flux from aquatic insects.
    Shipley JR; Twining CW; Mathieu-Resuge M; Parmar TP; Kainz M; Martin-Creuzburg D; Weber C; Winkler DW; Graham CH; Matthews B
    Curr Biol; 2022 Mar; 32(6):1342-1349.e3. PubMed ID: 35172126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of climate change and crop management practices on soybean phenology changes in China.
    He L; Jin N; Yu Q
    Sci Total Environ; 2020 Mar; 707():135638. PubMed ID: 31780168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The consequences of photoperiodism for organisms in new climates.
    Grevstad FS; Coop LB
    Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the urban heat island on the phenology of Odonata in London, UK.
    Villalobos-Jiménez G; Hassall C
    Int J Biometeorol; 2017 Jul; 61(7):1337-1346. PubMed ID: 28190181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bee phenology is predicted by climatic variation and functional traits.
    Stemkovski M; Pearse WD; Griffin SR; Pardee GL; Gibbs J; Griswold T; Neff JL; Oram R; Rightmyer MG; Sheffield CS; Wright K; Inouye BD; Inouye DW; Irwin RE
    Ecol Lett; 2020 Nov; 23(11):1589-1598. PubMed ID: 32812695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.