These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34636196)

  • 1. The investigation of energy metabolism in osteoblasts and osteoclasts.
    Shi Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Oct; 39(5):501-509. PubMed ID: 34636196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism in bone.
    Karner CM; Long F
    Bone; 2018 Oct; 115():2-7. PubMed ID: 28843700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast-osteoclast interactions.
    Chen X; Wang Z; Duan N; Zhu G; Schwarz EM; Xie C
    Connect Tissue Res; 2018 Mar; 59(2):99-107. PubMed ID: 28324674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Secondary osteoporosis or secondary contributors to bone loss in fracture. The relevance of immune system to bone metabolism].
    Tanaka Y
    Clin Calcium; 2013 Sep; 23(9):1265-70. PubMed ID: 23999361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD39 Produced from Human GMSCs Regulates the Balance of Osteoclasts and Osteoblasts through the Wnt/β-Catenin Pathway in Osteoporosis.
    Wu W; Xiao Z; Chen Y; Deng Y; Zeng D; Liu Y; Huang F; Wang J; Liu Y; Bellanti JA; Rong L; Zheng SG
    Mol Ther; 2020 Jun; 28(6):1518-1532. PubMed ID: 32304668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis.
    Da W; Tao L; Zhu Y
    Front Endocrinol (Lausanne); 2021; 12():675385. PubMed ID: 34054735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P2X7Rs: new therapeutic targets for osteoporosis.
    Huang H; He YM; Lin MM; Wang Y; Zhang X; Liang L; He X
    Purinergic Signal; 2023 Mar; 19(1):207-219. PubMed ID: 35106736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fat's loss is bone's gain.
    Pei L; Tontonoz P
    J Clin Invest; 2004 Mar; 113(6):805-6. PubMed ID: 15067310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
    Simon D; Derer A; Andes FT; Lezuo P; Bozec A; Schett G; Herrmann M; Harre U
    Bone; 2017 Dec; 105():35-41. PubMed ID: 28822790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of osteoblasts in energy homeostasis.
    Dirckx N; Moorer MC; Clemens TL; Riddle RC
    Nat Rev Endocrinol; 2019 Nov; 15(11):651-665. PubMed ID: 31462768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy regulation by the skeleton.
    Wolf G
    Nutr Rev; 2008 Apr; 66(4):229-33. PubMed ID: 18366536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Metabolism of Bone.
    Motyl KJ; Guntur AR; Carvalho AL; Rosen CJ
    Toxicol Pathol; 2017 Oct; 45(7):887-893. PubMed ID: 29096593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone.
    Wan Q; Schoenmaker T; Jansen ID; Bian Z; de Vries TJ; Everts V
    Bone; 2016 May; 86():10-21. PubMed ID: 26921824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between osteoblast and osteoclast: impact in bone disease.
    Phan TC; Xu J; Zheng MH
    Histol Histopathol; 2004 Oct; 19(4):1325-44. PubMed ID: 15375775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Potential of Natural Compounds Regulating Autophagy in the Treatment of Osteoporosis.
    Zhao Y; Qu Z; Zhao S; Zhang Y; Gong Y; Zhang B; Gao X; Wang D; Yan L
    J Inflamm Res; 2023; 16():6003-6021. PubMed ID: 38088943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone.
    Dai XM; Zong XH; Akhter MP; Stanley ER
    J Bone Miner Res; 2004 Sep; 19(9):1441-51. PubMed ID: 15312244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune signals in the context of secondary osteoporosis.
    Okada Y; Tanaka Y
    Histol Histopathol; 2004 Jul; 19(3):863-6. PubMed ID: 15168349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass.
    Wang L; Liu S; Zhao Y; Liu D; Liu Y; Chen C; Karray S; Shi S; Jin Y
    Cell Death Differ; 2015 Oct; 22(10):1654-64. PubMed ID: 25744024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone.
    Sims SM; Panupinthu N; Lapierre DM; Pereverzev A; Dixon SJ
    Biochim Biophys Acta; 2013 Jan; 1831(1):109-16. PubMed ID: 22892679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDH2 deficiency increases bone mass with reduced osteoclastogenesis by limiting RANKL expression in osteoblasts.
    Lee SH; Lee SH; Lee JH; Park JW; Kim JE
    Bone; 2019 Dec; 129():115056. PubMed ID: 31479775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.