These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34636235)
1. Formulating Multiphase Medium Anti-wetting States in an Air-Water-Oil System: Engineering Defects for Interface Chemical Evolutions. Ping Z; Sun Q; Yi J; Li Q; Zhao L; Zhang H; Huang F; Li S; Cheng L ACS Appl Mater Interfaces; 2021 Oct; 13(41):49556-49566. PubMed ID: 34636235 [TBL] [Abstract][Full Text] [Related]
2. Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry. Sun Y; Guo Z Adv Mater; 2020 Nov; 32(46):e2004875. PubMed ID: 33463790 [TBL] [Abstract][Full Text] [Related]
3. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Jung YC; Bhushan B Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
6. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Parbat D; Gaffar S; Rather AM; Gupta A; Manna U Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680 [TBL] [Abstract][Full Text] [Related]
7. Study of Oil Dewetting Ability of Superhydrophilic and Underwater Superoleophobic Surfaces from Air to Water for High-Effective Self-Cleaning Surface Designing. Tang L; Zeng Z; Wang G; Shen L; Zhu L; Zhang Y; Xue Q ACS Appl Mater Interfaces; 2019 May; 11(20):18865-18875. PubMed ID: 31038304 [TBL] [Abstract][Full Text] [Related]
8. Droplet Bottom Expansion and Its Wettability Control Mechanism Based on Macroscopic Defects. Gao H; Zhao F; Meng Z; Wang X; Han Z; Liu Y Langmuir; 2024 Jul; 40(26):13739-13748. PubMed ID: 38901843 [TBL] [Abstract][Full Text] [Related]
9. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain. Park JK; Yang Z; Kim S ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732 [TBL] [Abstract][Full Text] [Related]
10. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192 [TBL] [Abstract][Full Text] [Related]
11. Dual dimensional nanostructures with highly durable non-wetting properties under dynamic and underwater conditions. Baek S; Kim W; Jeon S; Yong K Nanoscale; 2017 May; 9(20):6665-6673. PubMed ID: 28333171 [TBL] [Abstract][Full Text] [Related]
12. Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures. Mai VC; Hou S; Pillai PR; Lim TT; Duan H ACS Nano; 2021 Apr; 15(4):6977-6986. PubMed ID: 33754693 [TBL] [Abstract][Full Text] [Related]
13. A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection. Song YY; Liu Y; Jiang HB; Li SY; Kaya C; Stegmaier T; Han ZW; Ren LQ Nanoscale; 2018 Aug; 10(34):16127-16137. PubMed ID: 30117515 [TBL] [Abstract][Full Text] [Related]
14. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil. Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191 [TBL] [Abstract][Full Text] [Related]
15. Smart Bionic Surfaces with Switchable Wettability and Applications. Li S; Fan Y; Liu Y; Niu S; Han Z; Ren L J Bionic Eng; 2021; 18(3):473-500. PubMed ID: 34131422 [TBL] [Abstract][Full Text] [Related]
16. Probing the interaction mechanism between oil droplets with asphaltenes and solid surfaces using AFM. Shi C; Xie L; Zhang L; Lu X; Zeng H J Colloid Interface Sci; 2020 Jan; 558():173-181. PubMed ID: 31586737 [TBL] [Abstract][Full Text] [Related]
17. Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Field for Dynamic Liquid Droplet Manipulation. Li Y; Li J; Liu L; Yan Y; Zhang Q; Zhang N; He L; Liu Y; Zhang X; Tian D; Leng J; Jiang L Adv Sci (Weinh); 2020 Sep; 7(18):2000772. PubMed ID: 32999834 [TBL] [Abstract][Full Text] [Related]
18. Wettability gradient on the elytra in the aquatic beetle Cybister chinensis and its role in angular position of the beetle at water-air interface. Sun M; Chen Y; Zheng Y; Zhen M; Shu C; Dai Z; Liang A; Gorb SN Acta Biomater; 2017 Mar; 51():408-417. PubMed ID: 28069503 [TBL] [Abstract][Full Text] [Related]
20. Influence of wettability and saturation on liquid-liquid interfacial area in porous media. Jain V; Bryant S; Sharma M Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]