BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34636818)

  • 1. A high-throughput, open-space and reusable microfluidic chip for combinational drug screening on tumor spheroids.
    Li L; Chen Y; Wang H; An G; Wu H; Huang W
    Lab Chip; 2021 Oct; 21(20):3924-3932. PubMed ID: 34636818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model.
    Sankar S; Mehta V; Ravi S; Sharma CS; Rath SN
    Biomed Microdevices; 2021 Oct; 23(4):50. PubMed ID: 34596764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed Viability Assays for High-Throughput Screening of Spheroids of Multiple Sizes.
    Marimuthu M; Gervais T
    Methods Mol Biol; 2023; 2644():435-447. PubMed ID: 37142939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer.
    Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN
    J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures.
    Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA
    J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies.
    Prince E; Kheiri S; Wang Y; Xu F; Cruickshank J; Topolskaia V; Tao H; Young EWK; McGuigan AP; Cescon DW; Kumacheva E
    Adv Healthc Mater; 2022 Jan; 11(1):e2101085. PubMed ID: 34636180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Factor Combinations for Stem Cell Differentiations on a Design-of-Experiment Microfluidic Chip.
    Li L; Tan D; Liu S; Jiao R; Yang X; Li F; Wu H; Huang W
    Anal Chem; 2020 Oct; 92(20):14228-14235. PubMed ID: 33017151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device.
    Patra B; Peng CC; Liao WH; Lee CH; Tung YC
    Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient tumor 3D spheroid arrays manufacturing
    Zheng J; Hu X; Gao X; Liu Y; Zhao S; Chen L; He G; Zhang J; Wei L; Yang Y
    Lab Chip; 2023 Mar; 23(6):1593-1602. PubMed ID: 36752157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine.
    Zhang Z; Chen YC; Urs S; Chen L; Simeone DM; Yoon E
    Small; 2018 Oct; 14(42):e1703617. PubMed ID: 30239130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy.
    Lim W; Park S
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30567363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient.
    Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M
    Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening.
    Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P
    Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term fluorescence hyperspectral imaging of on-chip treated co-culture tumour spheroids to follow clonal evolution.
    St-Georges-Robillard A; Cahuzac M; PĂ©ant B; Fleury H; Lateef MA; Ricard A; Sauriol A; Leblond F; Mes-Masson AM; Gervais T
    Integr Biol (Camb); 2019 Apr; 11(4):130-141. PubMed ID: 31172192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
    Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC
    Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip.
    Boot RC; Roscani A; van Buren L; Maity S; Koenderink GH; Boukany PE
    Lab Chip; 2023 Mar; 23(7):1768-1778. PubMed ID: 36809459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic platform for studying the anti-cancer effect of ursolic acid on tumor spheroid.
    Chang S; Wen J; Su Y; Ma H
    Electrophoresis; 2022 Jul; 43(13-14):1466-1475. PubMed ID: 35315532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.