BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34637274)

  • 1. Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides.
    Bollella P; Edwardraja S; Guo Z; Vickers CE; Whitfield J; Walden P; Melman A; Alexandrov K; Katz E
    ACS Sens; 2021 Oct; 6(10):3596-3603. PubMed ID: 34637274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caged Activators of Artificial Allosteric Protein Biosensors.
    Edwardraja S; Guo Z; Whitfield J; Lantadilla IR; Johnston WA; Walden P; Vickers CE; Alexandrov K
    ACS Synth Biol; 2020 Jun; 9(6):1306-1314. PubMed ID: 32339455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals.
    Bollella P; Edwardraja S; Guo Z; Kirill Alexandrov ; Katz E
    J Phys Chem Lett; 2020 Jul; 11(14):5549-5554. PubMed ID: 32602718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.
    González-Fernández E; Avlonitis N; Murray AF; Mount AR; Bradley M
    Biosens Bioelectron; 2016 Oct; 84():82-8. PubMed ID: 26684247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalizable Protein Biosensors Based on Synthetic Switch Modules.
    Guo Z; Johnston WA; Whitfield J; Walden P; Cui Z; Wijker E; Edwardraja S; Retamal Lantadilla I; Ely F; Vickers C; Ungerer JPJ; Alexandrov K
    J Am Chem Soc; 2019 May; 141(20):8128-8135. PubMed ID: 31074995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs.
    Shumeiko V; Paltiel Y; Bisker G; Hayouka Z; Shoseyov O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32937986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus.
    Eissa S; Zourob M
    Mikrochim Acta; 2020 Aug; 187(9):486. PubMed ID: 32761391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges.
    Choi JH
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineered calmodulin-based allosteric switch for Peptide biosensing.
    Meister GE; Joshi NS
    Chembiochem; 2013 Aug; 14(12):1460-7. PubMed ID: 23825049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca(2+) sensor.
    Guo Z; Johnston WA; Stein V; Kalimuthu P; Perez-Alcala S; Bernhardt PV; Alexandrov K
    Chem Commun (Camb); 2016 Jan; 52(3):485-8. PubMed ID: 26528736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-based biosensors.
    Liu Q; Wang J; Boyd BJ
    Talanta; 2015 May; 136():114-27. PubMed ID: 25702993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA Display Pipeline for Protein Biosensor Construction.
    Cui Z; Ayva CE; Liew YJ; Guo Z; Mutschler R; Dreier B; Fiorito MM; Walden P; Howard CB; Ely F; Plückthun A; Pretorius C; Ungerer JP; Buckle AM; Alexandrov K
    ACS Sens; 2024 Jun; 9(6):2846-2857. PubMed ID: 38807313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based biosensors.
    Suaifan GA; Esseghaier C; Ng A; Zourob M
    Analyst; 2013 Jul; 138(13):3735-9. PubMed ID: 23676852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical Models of Protease-Based Enzymatic Biosensors.
    Agrawal DK; Dolan EM; Hernandez NE; Blacklock KM; Khare SD; Sontag ED
    ACS Synth Biol; 2020 Feb; 9(2):198-208. PubMed ID: 32017536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplified and label-free electrochemical detection of a protease biomarker by integrating proteolysis-triggered transcription.
    Shi K; Cao L; Liu F; Xie S; Wang S; Huang Y; Lei C; Nie Z
    Biosens Bioelectron; 2021 Oct; 190():113372. PubMed ID: 34116447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors.
    Oliveira-Silva R; Sousa-Jerónimo M; Botequim D; Silva NJO; Paulo PMR; Prazeres DMF
    Trends Biochem Sci; 2020 Jul; 45(7):604-618. PubMed ID: 32386890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational control of genetic circuits using Potyvirus proteases.
    Fernandez-Rodriguez J; Voigt CA
    Nucleic Acids Res; 2016 Jul; 44(13):6493-502. PubMed ID: 27298256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed protease-based signaling networks.
    Fink T; Jerala R
    Curr Opin Chem Biol; 2022 Jun; 68():102146. PubMed ID: 35430555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment.
    Greening DW; Kapp EA; Ji H; Speed TP; Simpson RJ
    Biochim Biophys Acta; 2013 Nov; 1834(11):2396-407. PubMed ID: 23684732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.