BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34637389)

  • 1. Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models.
    Li Z; Li G; Wu X; Kan Z; Su H; Liu Y
    IEEE Trans Cybern; 2022 Nov; 52(11):12126-12139. PubMed ID: 34637389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance.
    Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.
    Brahmi B; Saad M; Ochoa-Luna C; Rahman MH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1369-1374. PubMed ID: 28814011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation.
    Wang J; Liu J; Zhang G; Guo S
    ISA Trans; 2022 Apr; 123():87-97. PubMed ID: 34217496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistive Arm-Exoskeleton Control Based on Human Muscular Manipulability.
    Petrič T; Peternel L; Morimoto J; Babič J
    Front Neurorobot; 2019; 13():30. PubMed ID: 31191289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive controller based on barrier Lyapunov function for a composite Cartesian-delta robotic device for precise time-varying position tracking.
    Mendoza-Bautista KJ; Torres-Mendez LA; Chairez I
    ISA Trans; 2023 Dec; 143():334-348. PubMed ID: 37709560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System.
    Shen Y; Sun J; Ma J; Rosen J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.