These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 34637389)
1. Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models. Li Z; Li G; Wu X; Kan Z; Su H; Liu Y IEEE Trans Cybern; 2022 Nov; 52(11):12126-12139. PubMed ID: 34637389 [TBL] [Abstract][Full Text] [Related]
2. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation. Wu X; Li Z; Kan Z; Gao H IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces. Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293 [TBL] [Abstract][Full Text] [Related]
4. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
5. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. Deng M; Li Z; Kang Y; Chen CLP; Chu X IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653 [TBL] [Abstract][Full Text] [Related]
6. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
7. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance. Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682 [TBL] [Abstract][Full Text] [Related]
8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
9. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Chen W; Li Z; Cui X; Zhang J; Bai S Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848 [TBL] [Abstract][Full Text] [Related]
10. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics. Brahmi B; Saad M; Ochoa-Luna C; Rahman MH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1369-1374. PubMed ID: 28814011 [TBL] [Abstract][Full Text] [Related]
11. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation. Wang J; Liu J; Zhang G; Guo S ISA Trans; 2022 Apr; 123():87-97. PubMed ID: 34217496 [TBL] [Abstract][Full Text] [Related]
12. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T; Sakurada T; Koike Y; Kansaku K J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293 [TBL] [Abstract][Full Text] [Related]
13. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088 [TBL] [Abstract][Full Text] [Related]
14. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation. Wu KY; Su YY; Yu YL; Lin KY; Lan CC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880 [TBL] [Abstract][Full Text] [Related]
15. Assistive Arm-Exoskeleton Control Based on Human Muscular Manipulability. Petrič T; Peternel L; Morimoto J; Babič J Front Neurorobot; 2019; 13():30. PubMed ID: 31191289 [TBL] [Abstract][Full Text] [Related]
16. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226 [TBL] [Abstract][Full Text] [Related]
17. Adaptive controller based on barrier Lyapunov function for a composite Cartesian-delta robotic device for precise time-varying position tracking. Mendoza-Bautista KJ; Torres-Mendez LA; Chairez I ISA Trans; 2023 Dec; 143():334-348. PubMed ID: 37709560 [TBL] [Abstract][Full Text] [Related]
18. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System. Shen Y; Sun J; Ma J; Rosen J IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698 [TBL] [Abstract][Full Text] [Related]
19. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. Pérez-San Lázaro R; Salgado I; Chairez I ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173 [TBL] [Abstract][Full Text] [Related]
20. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]