These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 34637780)
1. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Arrieta-Ortiz ML; Immanuel SRC; Turkarslan S; Wu WJ; Girinathan BP; Worley JN; DiBenedetto N; Soutourina O; Peltier J; Dupuy B; Bry L; Baliga NS Cell Host Microbe; 2021 Nov; 29(11):1709-1723.e5. PubMed ID: 34637780 [TBL] [Abstract][Full Text] [Related]
2. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354 [TBL] [Abstract][Full Text] [Related]
3. Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen. Hebdon SD; Menon SK; Richter-Addo GB; Karr EA; West AH J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201779 [TBL] [Abstract][Full Text] [Related]
4. Regulatory Role of Anti-Sigma Factor RsbW in Clostridioides difficile Stress Response, Persistence, and Infection. Cheng JKJ; Đapa T; Chan IYL; MacCreath TO; Slater R; Unnikrishnan M J Bacteriol; 2023 May; 205(5):e0046622. PubMed ID: 37098979 [TBL] [Abstract][Full Text] [Related]
5. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117 [TBL] [Abstract][Full Text] [Related]
6. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Antunes A; Camiade E; Monot M; Courtois E; Barbut F; Sernova NV; Rodionov DA; Martin-Verstraete I; Dupuy B Nucleic Acids Res; 2012 Nov; 40(21):10701-18. PubMed ID: 22989714 [TBL] [Abstract][Full Text] [Related]
8. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Janoir C; Denève C; Bouttier S; Barbut F; Hoys S; Caleechum L; Chapetón-Montes D; Pereira FC; Henriques AO; Collignon A; Monot M; Dupuy B Infect Immun; 2013 Oct; 81(10):3757-69. PubMed ID: 23897605 [TBL] [Abstract][Full Text] [Related]
9. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Fletcher JR; Pike CM; Parsons RJ; Rivera AJ; Foley MH; McLaren MR; Montgomery SA; Theriot CM Nat Commun; 2021 Jan; 12(1):462. PubMed ID: 33469019 [TBL] [Abstract][Full Text] [Related]
10. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. Ahmed UKB; Shadid TM; Larabee JL; Ballard JD mBio; 2020 Dec; 11(6):. PubMed ID: 33443122 [TBL] [Abstract][Full Text] [Related]
11. Butyrate enhances Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM J Bacteriol; 2023 Sep; 205(9):e0013823. PubMed ID: 37655912 [TBL] [Abstract][Full Text] [Related]
12. Regulatory transcription factors of Chandra H; Sorg JA; Hassett DJ; Sun X Crit Rev Microbiol; 2023 May; 49(3):334-349. PubMed ID: 35389761 [TBL] [Abstract][Full Text] [Related]
13. Autoinducing peptide-based quorum signaling systems in Clostridioides difficile. Ahmed UKB; Ballard JD Curr Opin Microbiol; 2022 Feb; 65():81-86. PubMed ID: 34773906 [TBL] [Abstract][Full Text] [Related]
14. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. Fuchs M; Lamm-Schmidt V; Lenče T; Sulzer J; Bublitz A; Wackenreuter J; Gerovac M; Strowig T; Faber F EMBO J; 2023 Jun; 42(12):e112858. PubMed ID: 37140366 [TBL] [Abstract][Full Text] [Related]
15. Response Regulator CD1688 Is a Negative Modulator of Sporulation in Clostridioides difficile. Kempher ML; Morris SC; Shadid TM; Menon SK; Ballard JD; West AH J Bacteriol; 2022 Aug; 204(8):e0013022. PubMed ID: 35852332 [TBL] [Abstract][Full Text] [Related]
16. In vivo commensal control of Clostridioides difficile virulence. Girinathan BP; DiBenedetto N; Worley JN; Peltier J; Arrieta-Ortiz ML; Immanuel SRC; Lavin R; Delaney ML; Cummins CK; Hoffman M; Luo Y; Gonzalez-Escalona N; Allard M; Onderdonk AB; Gerber GK; Sonenshein AL; Baliga NS; Dupuy B; Bry L Cell Host Microbe; 2021 Nov; 29(11):1693-1708.e7. PubMed ID: 34637781 [TBL] [Abstract][Full Text] [Related]
17. Characterization of an operon required for growth on cellobiose in Hasan MK; Dhungel BA; Govind R Microbiology (Reading); 2021 Aug; 167(8):. PubMed ID: 34410904 [TBL] [Abstract][Full Text] [Related]
18. Furtado KL; Plott L; Markovetz M; Powers D; Wang H; Hill DB; Papin J; Allbritton NL; Tamayo R mSphere; 2024 Jun; 9(6):e0008124. PubMed ID: 38837404 [TBL] [Abstract][Full Text] [Related]
20. Genomic evolution and virulence association of Xu X; Luo Y; Chen H; Song X; Bian Q; Wang X; Liang Q; Zhao J; Li C; Song G; Yang J; Sun L; Jiang J; Wang H; Zhu B; Ye G; Chen L; Tang YW; Jin D Emerg Microbes Infect; 2021 Dec; 10(1):1331-1345. PubMed ID: 34125660 [No Abstract] [Full Text] [Related] [Next] [New Search]