These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34637867)

  • 41. Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata.
    Reynolds A; Giltrap DM; Chambers PG
    Ecotoxicol Environ Saf; 2021 Jan; 207():111153. PubMed ID: 32896819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of ecotoxicity of spent fluid catalytic cracking (FCC) refinery catalysts on Raphidocelis subcapitata and predictive models for toxicity.
    Wang YJ; Wang C; Li LL; Chen Y; He CH; Zheng L
    Ecotoxicol Environ Saf; 2021 Oct; 222():112466. PubMed ID: 34217117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii.
    Li S; Wang P; Zhang C; Zhou X; Yin Z; Hu T; Hu D; Liu C; Zhu L
    Sci Total Environ; 2020 Apr; 714():136767. PubMed ID: 31981864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal and Biodegradation of 17β-Estradiol and Diethylstilbestrol by the Freshwater Microalgae Raphidocelis subcapitata.
    Liu W; Chen Q; He N; Sun K; Sun D; Wu X; Duan S
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29510598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxicity Effect of Silver Nanoparticles on Photosynthetic Pigment Content, Growth, ROS Production and Ultrastructural Changes of Microalgae
    Hazeem LJ; Kuku G; Dewailly E; Slomianny C; Barras A; Hamdi A; Boukherroub R; Culha M; Bououdina M
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31247939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of phosphorus on the toxicity of zinc to the microalga Raphidocelis subcapitata.
    Rodgher S; Contador TM; Rocha GS; Espindola ELG
    An Acad Bras Cienc; 2020; 92(suppl 2):e20190050. PubMed ID: 33174910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata.
    Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I
    Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum.
    Völker C; Kämpken I; Boedicker C; Oehlmann J; Oetken M
    Nanotoxicology; 2015; 9(6):677-85. PubMed ID: 25268182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata.
    Zamani-Ahmadmahmoodi R; Malekabadi MB; Rahimi R; Johari SA
    Environ Monit Assess; 2020 May; 192(6):330. PubMed ID: 32372388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Commercial pesticides for urban applications induced population growth and sub-cellular alterations in Raphidocelis subcapitata (Chlorophyceae) at concerning environmental concentrations.
    Carbajal-Hernández AL; Arzate-Cárdenas MA; Valerio-García RC; Martínez-Jerónimo F
    Ecotoxicology; 2022 Nov; 31(9):1462-1476. PubMed ID: 36319920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata.
    Moreira RA; Rocha GS; da Silva LCM; Goulart BV; Montagner CC; Melão MDGG; Espindola ELG
    Ecotoxicol Environ Saf; 2020 Dec; 206():111180. PubMed ID: 32861006
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles.
    Ulm L; Krivohlavek A; Jurašin D; Ljubojević M; Šinko G; Crnković T; Žuntar I; Šikić S; Vinković Vrček I
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19990-9. PubMed ID: 26296504
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amelioration of copper toxicity to a tropical freshwater microalga: Effect of natural DOM source and season.
    Macoustra GK; Jolley DF; Stauber J; Koppel DJ; Holland A
    Environ Pollut; 2020 Nov; 266(Pt 2):115141. PubMed ID: 32659625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the toxicity of nickel nanowires to freshwater organisms at concentrations and short-term exposures compatible with their application in water treatment.
    Nogueira V; Sousa CT; Araujo JP; Pereira R
    Aquat Toxicol; 2020 Oct; 227():105595. PubMed ID: 32911330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of the antimalarial lumefantrine on Lemna minor, Raphidocelis subcapitata and Chlorella vulgaris.
    Chia MA; Ameh I; Agee JT; Otogo RA; Shaba AF; Bashir H; Umar F; Yisa AG; Uyovbisere EE; Sha'aba RI
    Environ Toxicol Pharmacol; 2021 Jul; 85():103635. PubMed ID: 33716093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocystis antarctica.
    Gissi F; Adams MS; King CK; Jolley DF
    Environ Toxicol Chem; 2015 Jul; 34(7):1578-87. PubMed ID: 25703718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles.
    San-Miguel MA; da Silva EZ; Zannetti SM; Cilense M; Fabbro MT; Gracia L; Andrés J; Longo E
    Nanotechnology; 2016 Jun; 27(22):225703. PubMed ID: 27114472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ecotoxicity of cationic cellulose polymers to aquatic biota: The influence of charge density.
    Simões AM; Venâncio C; Alves L; Antunes FE; Lopes I
    Sci Total Environ; 2022 Feb; 806(Pt 2):150560. PubMed ID: 34607099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and theoretical investigation on photocatalytic activities of 1D Ag/Ag
    Liu D; Huang W; Li L; Liu L; Sun X; Liu B; Yang B; Guo C
    Nanotechnology; 2017 Sep; 28(38):385702. PubMed ID: 28675753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.