BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 34638388)

  • 61. Inhibition of CD39 unleashes macrophage antibody-dependent cellular phagocytosis against B-cell lymphoma.
    Casey M; Segawa K; Law SC; Sabdia MB; Nowlan B; Salik B; Lee C; Winterford C; Pearson S; Madore J; Dougall WC; Gandhi MK; Nakamura K
    Leukemia; 2023 Feb; 37(2):379-387. PubMed ID: 36539557
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer.
    Bakema JE; van Egmond M
    Curr Top Microbiol Immunol; 2014; 382():373-92. PubMed ID: 25116109
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cellular Cytotoxicity of Next-Generation CD20 Monoclonal Antibodies.
    VanDerMeid KR; Elliott MR; Baran AM; Barr PM; Chu CC; Zent CS
    Cancer Immunol Res; 2018 Oct; 6(10):1150-1160. PubMed ID: 30089638
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis.
    Naicker SD; Feerick CL; Lynch K; Swan D; McEllistrim C; Henderson R; Leonard NA; Treacy O; Natoni A; Rigalou A; Cabral J; Chiu C; Sasser K; Ritter T; O'Dwyer M; Ryan AE
    Oncoimmunology; 2021 Jan; 10(1):1859263. PubMed ID: 33552684
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tumor antigen-targeting monoclonal antibody-based immunotherapy: Orchestrating combined strategies for the development of long-term antitumor immunity.
    Michaud HA; Eliaou JF; Lafont V; Bonnefoy N; Gros L
    Oncoimmunology; 2014 Oct; 3(9):e955684. PubMed ID: 25941618
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeting Tumor-Associated Macrophages in Cancer Immunotherapy.
    Petty AJ; Owen DH; Yang Y; Huang X
    Cancers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771482
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.
    Chung AW; Crispin M; Pritchard L; Robinson H; Gorny MK; Yu X; Bailey-Kellogg C; Ackerman ME; Scanlan C; Zolla-Pazner S; Alter G
    AIDS; 2014 Nov; 28(17):2523-30. PubMed ID: 25160934
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Immunotherapy targeting inhibitory Fcγ receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization.
    Williams EL; Tutt AL; Beers SA; French RR; Chan CH; Cox KL; Roghanian A; Penfold CA; Butts CL; Boross P; Verbeek JS; Cragg MS; Glennie MJ
    J Immunol; 2013 Oct; 191(8):4130-40. PubMed ID: 24026082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The cross-talk between macrophages and tumor cells as a target for cancer treatment.
    Aizaz M; Khan A; Khan F; Khan M; Musad Saleh EA; Nisar M; Baran N
    Front Oncol; 2023; 13():1259034. PubMed ID: 38033495
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab.
    Pander J; Heusinkveld M; van der Straaten T; Jordanova ES; Baak-Pablo R; Gelderblom H; Morreau H; van der Burg SH; Guchelaar HJ; van Hall T
    Clin Cancer Res; 2011 Sep; 17(17):5668-73. PubMed ID: 21788356
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Don't eat me/eat me signals as a novel strategy in cancer immunotherapy.
    Khalaji A; Yancheshmeh FB; Farham F; Khorram A; Sheshbolouki S; Zokaei M; Vatankhah F; Soleymani-Goloujeh M
    Heliyon; 2023 Oct; 9(10):e20507. PubMed ID: 37822610
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy.
    Lim SH; Vaughan AT; Ashton-Key M; Williams EL; Dixon SV; Chan HT; Beers SA; French RR; Cox KL; Davies AJ; Potter KN; Mockridge CI; Oscier DG; Johnson PW; Cragg MS; Glennie MJ
    Blood; 2011 Sep; 118(9):2530-40. PubMed ID: 21768293
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineered Bacterial Outer Membrane Vesicles as Controllable Two-Way Adaptors to Activate Macrophage Phagocytosis for Improved Tumor Immunotherapy.
    Feng Q; Ma X; Cheng K; Liu G; Li Y; Yue Y; Liang J; Zhang L; Zhang T; Wang X; Gao X; Nie G; Zhao X
    Adv Mater; 2022 Oct; 34(40):e2206200. PubMed ID: 35985666
    [TBL] [Abstract][Full Text] [Related]  

  • 74. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity.
    Xiao L; Zhang L; Guo C; Xin Q; Gu X; Jiang C; Wu J
    Cancer Commun (Lond); 2024 Jun; ():. PubMed ID: 38923737
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Targeting myeloid checkpoint Siglec-10 reactivates antitumor immunity and improves anti-programmed cell death 1 efficacy in gastric cancer.
    Lv K; Sun M; Fang H; Wang J; Lin C; Liu H; Zhang H; Li H; He H; Gu Y; Li R; Shao F; Xu J
    J Immunother Cancer; 2023 Nov; 11(11):. PubMed ID: 37935567
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
    Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y
    MAbs; 2018; 10(2):315-324. PubMed ID: 29182441
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation.
    Suter EC; Schmid EM; Harris AR; Voets E; Francica B; Fletcher DA
    Cell Rep; 2021 Aug; 36(8):109587. PubMed ID: 34433055
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
    Ring NG; Herndler-Brandstetter D; Weiskopf K; Shan L; Volkmer JP; George BM; Lietzenmayer M; McKenna KM; Naik TJ; McCarty A; Zheng Y; Ring AM; Flavell RA; Weissman IL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10578-E10585. PubMed ID: 29158380
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy.
    Cao X; Chen J; Li B; Dang J; Zhang W; Zhong X; Wang C; Raoof M; Sun Z; Yu J; Fakih MG; Feng M
    Sci Adv; 2022 Mar; 8(11):eabl9171. PubMed ID: 35302839
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.