BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34638774)

  • 1. Human CD22-Transgenic, Primary Murine Lymphoma Challenges Immunotherapies in Organ-Specific Tumor Microenvironments.
    Gsottberger F; Brandl C; Wendland K; Petkovic S; Emmerich C; Erber R; Geppert C; Hartmann A; Mackensen A; Nitschke L; Müller F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model.
    Bednar KJ; Shanina E; Ballet R; Connors EP; Duan S; Juan J; Arlian BM; Kulis MD; Butcher EC; Fung-Leung WP; Rao TS; Paulson JC; Macauley MS
    J Immunol; 2017 Nov; 199(9):3116-3128. PubMed ID: 28972089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for B-Cell Lymphoma Therapy.
    Hong S; Yu C; Wang P; Shi Y; Cao W; Cheng B; Chapla DG; Ma Y; Li J; Rodrigues E; Narimatsu Y; Yates JR; Chen X; Clausen H; Moremen KW; Macauley MS; Paulson JC; Wu P
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3603-3610. PubMed ID: 33314603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy.
    Lin X; Zeng T; Lin J; Zhang Q; Cheng H; Fang S; Lin S; Chen Y; Xu Y; Lin J
    Cancer Biol Ther; 2020; 21(2):130-138. PubMed ID: 31690181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human CD22 cannot fully substitute murine CD22 functions in vivo, as shown in a new knockin mouse model.
    Wöhner M; Born S; Nitschke L
    Eur J Immunol; 2012 Nov; 42(11):3009-18. PubMed ID: 22965838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical evaluation of a diabody-based (177)Lu-radioimmunoconjugate for CD22-directed radioimmunotherapy in a non-Hodgkin lymphoma mouse model.
    Weber T; Bötticher B; Arndt MA; Mier W; Sauter M; Exner E; Keller A; Krämer S; Leotta K; Wischnjow A; Grosse-Hovest L; Strumberg D; Jäger D; Gröne HJ; Haberkorn U; Brem G; Krauss J
    Cancer Lett; 2016 Oct; 381(2):296-304. PubMed ID: 27524505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and Its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma.
    Stein R; Qu Z; Chen S; Rosario A; Shi V; Hayes M; Horak ID; Hansen HJ; Goldenberg DM
    Clin Cancer Res; 2004 Apr; 10(8):2868-78. PubMed ID: 15102696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope.
    Velasco-Hernandez T; Zanetti SR; Roca-Ho H; Gutierrez-Aguera F; Petazzi P; Sánchez-Martínez D; Molina O; Baroni ML; Fuster JL; Ballerini P; Bueno C; Fernandez-Fuentes N; Engel P; Menendez P
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32788237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.
    Haso W; Lee DW; Shah NN; Stetler-Stevenson M; Yuan CM; Pastan IH; Dimitrov DS; Morgan RA; FitzGerald DJ; Barrett DM; Wayne AS; Mackall CL; Orentas RJ
    Blood; 2013 Feb; 121(7):1165-74. PubMed ID: 23243285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial.
    Wayne AS; Kreitman RJ; Findley HW; Lew G; Delbrook C; Steinberg SM; Stetler-Stevenson M; Fitzgerald DJ; Pastan I
    Clin Cancer Res; 2010 Mar; 16(6):1894-903. PubMed ID: 20215554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing-Mediated Antigen Escape from Immunotherapy for B-cell Malignancies.
    Bourcier J; Abdel-Wahab O
    Blood Cancer Discov; 2022 Mar; 3(2):87-89. PubMed ID: 35015686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High treatment efficacy by dual targeting of Burkitt's lymphoma xenografted mice with a (177)Lu-based CD22-specific radioimmunoconjugate and rituximab.
    Weber T; Bötticher B; Mier W; Sauter M; Krämer S; Leotta K; Keller A; Schlegelmilch A; Grosse-Hovest L; Jäger D; Haberkorn U; Arndt MA; Krauss J
    Eur J Nucl Med Mol Imaging; 2016 Mar; 43(3):489-98. PubMed ID: 26341366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the anti-CD22 targeted therapy, moxetumomab pasudotox, for B-cell precursor acute lymphoblastic leukemia.
    Kinjyo I; Matlawska-Wasowska K; Chen X; Monks NR; Burke P; Winter SS; Wilson BS
    Pediatr Blood Cancer; 2017 Nov; 64(11):. PubMed ID: 28449314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antitumor activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi lymphoma is enhanced by either an anti-CD19 antibody or an anti-CD19 immunotoxin.
    Ghetie MA; Tucker K; Richardson J; Uhr JW; Vitetta ES
    Blood; 1992 Nov; 80(9):2315-20. PubMed ID: 1384801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Saporin-Containing Immunotoxins Specific for CD20 and CD22 Show Different Behavior in Killing Lymphoma Cells.
    Polito L; Mercatelli D; Bortolotti M; Maiello S; Djemil A; Battelli MG; Bolognesi A
    Toxins (Basel); 2017 May; 9(6):. PubMed ID: 28556822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of the murine Cd22 locus. Mapping to chromosome 7 and characterization of two alleles.
    Law CL; Torres RM; Sundberg HA; Parkhouse RM; Brannan CI; Copeland NG; Jenkins NA; Clark EA
    J Immunol; 1993 Jul; 151(1):175-87. PubMed ID: 8100843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of specific anti-B and/or anti-plasma cell immunotherapy on antibody production in baboons: depletion of CD20- and CD22-positive B cells does not result in significantly decreased production of anti-alphaGal antibody.
    Alwayn IP; Xu Y; Basker M; Wu C; Buhler L; Lambrigts D; Treter S; Harper D; Kitamura H; Vitetta ES; Abraham S; Awwad M; White-Scharf ME; Sachs DH; Thall A; Cooper DK
    Xenotransplantation; 2001 Aug; 8(3):157-71. PubMed ID: 11472623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy.
    Fry TJ; Shah NN; Orentas RJ; Stetler-Stevenson M; Yuan CM; Ramakrishna S; Wolters P; Martin S; Delbrook C; Yates B; Shalabi H; Fountaine TJ; Shern JF; Majzner RG; Stroncek DF; Sabatino M; Feng Y; Dimitrov DS; Zhang L; Nguyen S; Qin H; Dropulic B; Lee DW; Mackall CL
    Nat Med; 2018 Jan; 24(1):20-28. PubMed ID: 29155426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses.
    Brempelis KJ; Cowan CM; Kreuser SA; Labadie KP; Prieskorn BM; Lieberman NAP; Ene CI; Moyes KW; Chinn H; DeGolier KR; Matsumoto LR; Daniel SK; Yokoyama JK; Davis AD; Hoglund VJ; Smythe KS; Balcaitis SD; Jensen MC; Ellenbogen RG; Campbell JS; Pierce RH; Holland EC; Pillarisetty VG; Crane CA
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33115946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Immune-checkpoint and hemopathies].
    Burroni B; Broudin C; Damotte D; Laurent C
    Ann Pathol; 2017 Feb; 37(1):101-110. PubMed ID: 28161001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.