These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34638831)
21. Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Yan M; Fritsch PW; Moore MJ; Feng T; Meng A; Yang J; Deng T; Zhao C; Yao X; Sun H; Wang H Mol Phylogenet Evol; 2018 Apr; 121():198-211. PubMed ID: 29360618 [TBL] [Abstract][Full Text] [Related]
22. Unprecedented variation pattern of plastid genomes and the potential role in adaptive evolution in Poales. Wu H; Li DZ; Ma PF BMC Biol; 2024 Apr; 22(1):97. PubMed ID: 38679718 [TBL] [Abstract][Full Text] [Related]
23. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Guisinger MM; Kuehl JV; Boore JL; Jansen RK Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190 [TBL] [Abstract][Full Text] [Related]
25. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Sloan DB; Triant DA; Forrester NJ; Bergner LM; Wu M; Taylor DR Mol Phylogenet Evol; 2014 Mar; 72():82-9. PubMed ID: 24373909 [TBL] [Abstract][Full Text] [Related]
26. Does IR-loss promote plastome structural variation and sequence evolution? Wang ZX; Wang DJ; Yi TS Front Plant Sci; 2022; 13():888049. PubMed ID: 36247567 [TBL] [Abstract][Full Text] [Related]
27. Plastome-Wide Nucleotide Substitution Rates Reveal Accelerated Rates in Papilionoideae and Correlations with Genome Features Across Legume Subfamilies. Schwarz EN; Ruhlman TA; Weng ML; Khiyami MA; Sabir JSM; Hajarah NH; Alharbi NS; Rabah SO; Jansen RK J Mol Evol; 2017 Apr; 84(4):187-203. PubMed ID: 28397003 [TBL] [Abstract][Full Text] [Related]
28. Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mower JP; Guo W; Partha R; Fan W; Levsen N; Wolff K; Nugent JM; Pabón-Mora N; González F Mol Phylogenet Evol; 2021 Sep; 162():107217. PubMed ID: 34082129 [TBL] [Abstract][Full Text] [Related]
29. Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. Schelkunov MI; Shtratnikova VY; Nuraliev MS; Selosse MA; Penin AA; Logacheva MD Genome Biol Evol; 2015 Jan; 7(4):1179-91. PubMed ID: 25635040 [TBL] [Abstract][Full Text] [Related]
30. The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte). Zhang HR; Xiang QP; Zhang XC Genome Biol Evol; 2019 Apr; 11(4):1258-1274. PubMed ID: 30937434 [TBL] [Abstract][Full Text] [Related]
31. Comparative Analysis of the Complete Plastomes of Niu Z; Pan J; Zhu S; Li L; Xue Q; Liu W; Ding X Front Plant Sci; 2017; 8():1713. PubMed ID: 29046685 [TBL] [Abstract][Full Text] [Related]
32. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729 [TBL] [Abstract][Full Text] [Related]
33. The extremely reduced, diverged and reconfigured plastomes of the largest mycoheterotrophic orchid lineage. Wen Y; Qin Y; Shao B; Li J; Ma C; Liu Y; Yang B; Jin X BMC Plant Biol; 2022 Sep; 22(1):448. PubMed ID: 36123622 [TBL] [Abstract][Full Text] [Related]
34. Mycoheterotrophic Epirixanthes (Polygalaceae) has a typical angiosperm mitogenome but unorthodox plastid genomes. Petersen G; Darby H; Lam VKY; Pedersen HÆ; Merckx VSFT; Zervas A; Seberg O; Graham SW Ann Bot; 2019 Nov; 124(5):791-807. PubMed ID: 31346602 [TBL] [Abstract][Full Text] [Related]
35. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew. Rabah SO; Lee C; Hajrah NH; Makki RM; Alharby HF; Alhebshi AM; Sabir JSM; Jansen RK; Ruhlman TA Plant Genome; 2017 Nov; 10(3):. PubMed ID: 29293812 [TBL] [Abstract][Full Text] [Related]
36. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae). Bai HR; Oyebanji O; Zhang R; Yi TS Plant Divers; 2021 Feb; 43(1):27-34. PubMed ID: 33778222 [TBL] [Abstract][Full Text] [Related]
37. Extensive reorganization of the chloroplast genome of Raman G; Nam GH; Park S Front Plant Sci; 2022; 13():1043740. PubMed ID: 37090468 [TBL] [Abstract][Full Text] [Related]
38. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. Guo YY; Yang JX; Bai MZ; Zhang GQ; Liu ZJ BMC Plant Biol; 2021 May; 21(1):248. PubMed ID: 34058997 [TBL] [Abstract][Full Text] [Related]
39. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium. Choi K; Weng ML; Ruhlman TA; Jansen RK Mol Phylogenet Evol; 2021 Feb; 155():106986. PubMed ID: 33059063 [TBL] [Abstract][Full Text] [Related]
40. Large-Scale Comparative Analysis Reveals the Mechanisms Driving Plastomic Compaction, Reduction, and Inversions in Conifers II (Cupressophytes). Wu CS; Chaw SM Genome Biol Evol; 2016 Dec; 8(12):3740-3750. PubMed ID: 28039231 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]