BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34638847)

  • 1. Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer.
    Mokoena DR; George BP; Abrahamse H
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of photodynamic therapy in current breast cancer treatment methodologies.
    Ostańska E; Aebisher D; Bartusik-Aebisher D
    Biomed Pharmacother; 2021 May; 137():111302. PubMed ID: 33517188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy.
    Zhang Y; Wang B; Zhao R; Zhang Q; Kong X
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111099. PubMed ID: 32600703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode.
    Elgun T; Yurttas AG; Cinar K; Ozcelik S; Gul A
    Photodiagnosis Photodyn Ther; 2023 Dec; 44():103849. PubMed ID: 37863378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic therapy: current status and future directions.
    Benov L
    Med Princ Pract; 2015; 24 Suppl 1(Suppl 1):14-28. PubMed ID: 24820409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of photodynamic therapy in breast cancer - A review of in vitro research.
    Czarnecka-Czapczyńska M; Aebisher D; Oleś P; Sosna B; Krupka-Olek M; Dynarowicz K; Latos W; Cieślar G; Kawczyk-Krupka A
    Biomed Pharmacother; 2021 Dec; 144():112342. PubMed ID: 34678730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-deoxy-D-glucose augments photodynamic therapy induced mitochondrial caspase-independent apoptosis and energy-mediated autophagy.
    Feng X; Shi Y; Xie L; Zhang K; Wang X; Liu Q; Wang P
    Lasers Surg Med; 2019 Apr; 51(4):352-362. PubMed ID: 30277589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer.
    Shang L; Zhou X; Zhang J; Shi Y; Zhong L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic therapy of Pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models.
    Hoi SW; Wong HM; Chan JY; Yue GG; Tse GM; Law BK; Fong WP; Fung KP
    Phytother Res; 2012 May; 26(5):734-42. PubMed ID: 22072524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Novel Breast Cancer Therapies: Photodynamic Therapy and Plant Derived Agent Induced Cell Death Mechanisms.
    George BP; Abrahamse H
    Anticancer Agents Med Chem; 2016; 16(7):793-801. PubMed ID: 26499768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria-based photodynamic anti-cancer therapy.
    Morgan J; Oseroff AR
    Adv Drug Deliv Rev; 2001 Jul; 49(1-2):71-86. PubMed ID: 11377804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel pro-apoptotic role of zinc octacarboxyphthalocyanine in melanoma me45 cancer cell's photodynamic therapy (PDT).
    Nackiewicz J; Kliber-Jasik M; Skonieczna M
    J Photochem Photobiol B; 2019 Jan; 190():146-153. PubMed ID: 30551028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Management of Bladder Cancer-The Role of Photodynamic Therapy.
    Kubrak T; Karakuła M; Czop M; Kawczyk-Krupka A; Aebisher D
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer.
    He Z; Jiang H; Zhang X; Zhang H; Cui Z; Sun L; Li H; Qian J; Ma J; Huang J
    Pharmacol Res; 2020 Oct; 160():105184. PubMed ID: 32946931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitizers in prostate cancer therapy.
    Gheewala T; Skwor T; Munirathinam G
    Oncotarget; 2017 May; 8(18):30524-30538. PubMed ID: 28430624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of Muscle-Invasive Tumors by Photodynamic Therapy with Tetrahydroporphyrin-Tetratosylat in an Orthotopic Rat Bladder Cancer Model.
    Berndt-Paetz M; Schulze P; Stenglein PC; Weimann A; Wang Q; Horn LC; Riyad YM; Griebel J; Hermann R; Glasow A; Stolzenburg JU; Neuhaus J
    Mol Cancer Ther; 2019 Apr; 18(4):743-750. PubMed ID: 30824608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT.
    Robertson CA; Evans DH; Abrahamse H
    J Photochem Photobiol B; 2009 Jul; 96(1):1-8. PubMed ID: 19406659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment.
    Lu Z; Tao Y; Zhou Z; Zhang J; Li C; Ou L; Zhao B
    Free Radic Biol Med; 2006 Nov; 41(10):1590-605. PubMed ID: 17045927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Photodynamic therapy in the treatment of breast cancer].
    Płonka J; Latocha M
    Pol Merkur Lekarski; 2012 Sep; 33(195):173-5. PubMed ID: 23157138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.