These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 34638881)

  • 21. Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase.
    Koivisto P; Duncan T; Lindahl T; Sedgwick B
    J Biol Chem; 2003 Nov; 278(45):44348-54. PubMed ID: 12944387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative demethylation of DNA and RNA mediated by non-heme iron-dependent dioxygenases.
    Lu L; Zhu C; Xia B; Yi C
    Chem Asian J; 2014 Aug; 9(8):2018-29. PubMed ID: 24909658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations.
    Hashimoto H; Zhang X; Vertino PM; Cheng X
    J Biol Chem; 2015 Aug; 290(34):20723-20733. PubMed ID: 26152719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage.
    Sundheim O; Vågbø CB; Bjørås M; Sousa MM; Talstad V; Aas PA; Drabløs F; Krokan HE; Tainer JA; Slupphaug G
    EMBO J; 2006 Jul; 25(14):3389-97. PubMed ID: 16858410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA.
    Kanazhevskaya LY; Gorbunov AA; Lukina MV; Smyshliaev DA; Zhdanova PV; Lomzov AA; Koval VV
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways.
    Latifi R; Minnick JL; Quesne MG; de Visser SP; Tahsini L
    Dalton Trans; 2020 Apr; 49(14):4266-4276. PubMed ID: 32141456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level.
    Davletgildeeva AT; Kuznetsov NA
    Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes.
    Parker MJ; Weigele PR; Saleh L
    Biochemistry; 2019 Feb; 58(6):450-467. PubMed ID: 30571101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of demethylase AlkB homologs in cancer.
    Li Q; Zhu Q
    Front Oncol; 2023; 13():1153463. PubMed ID: 37007161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases.
    Zhang Y; Wang C
    Mol Biol Rep; 2021 May; 48(5):4747-4756. PubMed ID: 34046849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [TET proteins and epigenetic modifications in cancers].
    Ciesielski P; Jóźwiak P; Krześlak A
    Postepy Hig Med Dosw (Online); 2015 Dec; 69():1371-83. PubMed ID: 26671928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative demethylase ALKBH5 repairs DNA alkylation damage and protects against alkylation-induced toxicity.
    Akula D; O'Connor TR; Anindya R
    Biochem Biophys Res Commun; 2021 Jan; 534():114-120. PubMed ID: 33321288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms.
    Li D; Guo B; Wu H; Tan L; Lu Q
    Cytogenet Genome Res; 2015; 146(3):171-80. PubMed ID: 26302812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues.
    Lee DH; Jin SG; Cai S; Chen Y; Pfeifer GP; O'Connor TR
    J Biol Chem; 2005 Nov; 280(47):39448-59. PubMed ID: 16174769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational flexibility influences structure-function relationships in nucleic acid N-methyl demethylases.
    Waheed SO; Ramanan R; Chaturvedi SS; Ainsley J; Evison M; Ames JM; Schofield CJ; Christov CZ; Karabencheva-Christova TG
    Org Biomol Chem; 2019 Feb; 17(8):2223-2231. PubMed ID: 30720838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatics and functional analysis define four distinct groups of AlkB DNA-dioxygenases in bacteria.
    van den Born E; Bekkelund A; Moen MN; Omelchenko MV; Klungland A; Falnes PØ
    Nucleic Acids Res; 2009 Nov; 37(21):7124-36. PubMed ID: 19786499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA.
    Drohat AC; Coey CT
    Chem Rev; 2016 Oct; 116(20):12711-12729. PubMed ID: 27501078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial DNA repair genes and their eukaryotic homologues: 3. AlkB dioxygenase and Ada methyltransferase in the direct repair of alkylated DNA.
    Nieminuszczy J; Grzesiuk E
    Acta Biochim Pol; 2007; 54(3):459-68. PubMed ID: 17823664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila Alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage.
    Wakisaka KT; Muraoka Y; Shimizu J; Yamaguchi M; Ueoka I; Mizuta I; Yoshida H; Yamaguchi M
    Neuroreport; 2019 Oct; 30(15):1039-1047. PubMed ID: 31503204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.