BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 34638885)

  • 1.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omics Approaches for Engineering Wheat Production under Abiotic Stresses.
    Shah T; Xu J; Zou X; Cheng Y; Nasir M; Zhang X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.
    Jha UC; Bohra A; Jha R; Parida SK
    Plant Cell Rep; 2019 Mar; 38(3):255-277. PubMed ID: 30637478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes.
    Jha UC; Sharma KD; Nayyar H; Parida SK; Siddique KHM
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches.
    Chongtham SK; Devi EL; Samantara K; Yasin JK; Wani SH; Mukherjee S; Razzaq A; Bhupenchandra I; Jat AL; Singh LK; Kumar A
    Planta; 2022 Jun; 256(2):24. PubMed ID: 35767119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legume genetic resources and transcriptome dynamics under abiotic stress conditions.
    Abdelrahman M; Jogaiah S; Burritt DJ; Tran LP
    Plant Cell Environ; 2018 Sep; 41(9):1972-1983. PubMed ID: 29314055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Improvement of Cereals and Grain Legumes.
    Nawaz MA; Chung G
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33113769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses.
    Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D
    Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook.
    Bohra A; Sahrawat KL; Kumar S; Joshi R; Parihar AK; Singh U; Singh D; Singh NP
    J Appl Genet; 2015 May; 56(2):151-61. PubMed ID: 25592547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods of Gene Expression Profiling to Understand Abiotic Stress Perception and Response in Legume Crops.
    Bala M; Sinha R; Mallick MA; Sharma TR; Singh AK
    Methods Mol Biol; 2020; 2107():99-126. PubMed ID: 31893444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omics: The way forward to enhance abiotic stress tolerance in
    Raza A; Razzaq A; Mehmood SS; Hussain MA; Wei S; He H; Zaman QU; Xuekun Z; Hasanuzzaman M
    GM Crops Food; 2021 Jan; 12(1):251-281. PubMed ID: 33464960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.
    Dwivedi SL; Scheben A; Edwards D; Spillane C; Ortiz R
    Front Plant Sci; 2017; 8():1461. PubMed ID: 28900432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting legume crops to climate change using genomic approaches.
    Mousavi-Derazmahalleh M; Bayer PE; Hane JK; Valliyodan B; Nguyen HT; Nelson MN; Erskine W; Varshney RK; Papa R; Edwards D
    Plant Cell Environ; 2019 Jan; 42(1):6-19. PubMed ID: 29603775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orphan legume crops enter the genomics era!
    Varshney RK; Close TJ; Singh NK; Hoisington DA; Cook DR
    Curr Opin Plant Biol; 2009 Apr; 12(2):202-10. PubMed ID: 19157958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.