BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34639878)

  • 1. Sustainable Applications for Utilizing Antimony Tailing Coarse Aggregate (ATCA) in Concrete: Characteristic of ATCA and Toxicity Risks of Concrete.
    Wang J; Li L; Zhang L; Li B; Deng R; Shi D
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength and Durability Properties of Antimony Tailing Coarse Aggregate (ATCA) Concrete.
    Li L; Wang J; Zhang L; Deng R; Zhou S; Wang G
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties and Uniaxial Failure Behavior of Concrete with Different Solid Waste Coarse Aggregates.
    Zhou M; Bai J; Li S; Zhang K; Li C; Wang X
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect on mechanical properties of lightweight sustainable concrete with the use of waste coconut shell as replacement for coarse aggregate.
    Natarajan KS; Ramalingasekar D; Palanisamy S; Ashokan M
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39421-39426. PubMed ID: 35106723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Mechanical Properties and Porosity of Concrete Using Steel Slag Coarse Aggregate.
    Miah MJ; Patoary MMH; Paul SC; Babafemi AJ; Panda B
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate.
    Stel'makh SA; Beskopylny AN; Shcherban' EM; Mailyan LR; Meskhi B; Shilov AA; El'shaeva D; Chernil'nik A; Kurilova S
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Properties and Uniaxial Compression Stress-Strain Relation of Recycled Coarse Aggregate Concrete after Carbonation.
    Chen TW; Wu J; Dong GQ
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties of Large Slump Concrete Made by Post-Filling Coarse Aggregate Mixing Procedure.
    Jia J; Cao Q; Luan L; Wang Z; Zhang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Evaluation of Plastic Concrete Modified with E-Waste Plastic as a Partial Replacement of Coarse Aggregate.
    Ahmad F; Jamal A; Mazher KM; Umer W; Iqbal M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paint booth waste as an alternative aggregate for the production of interlocking concrete blocks.
    Câmara CM; Ferrazzo ST; Levandoski WMK; da Silva CV; Korf EP
    Sci Rep; 2024 Feb; 14(1):3180. PubMed ID: 38326508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on the Mechanical Properties and Compression Size Effect of Recycled Aggregate Concrete.
    Du Y; Zhao Z; Xiao Q; Shi F; Yang J; Gao P
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33947092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.
    Park SB; Jang YI; Lee J; Lee BJ
    J Hazard Mater; 2009 Jul; 166(1):348-55. PubMed ID: 19124198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceramic ware waste as coarse aggregate for structural concrete production.
    García-González J; Rodríguez-Robles D; Juan-Valdés A; Morán-Del Pozo JM; Guerra-Romero MI
    Environ Technol; 2015; 36(23):3050-9. PubMed ID: 25188783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of recycled coarse aggregates obtained from waste concretes on lightweight pervious concrete properties.
    Kaplan G; Gulcan A; Cagdas B; Bayraktar OY
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17369-17394. PubMed ID: 33398744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate.
    Ahmad J; Martínez-García R; de-Prado-Gil J; Irshad K; El-Shorbagy MA; Fediuk R; Vatin NI
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Active Additives and Coarse Aggregate Granulometric Composition on the Properties and Durability of Pervious Concrete.
    Banevičienė V; Malaiškienė J; Boris R; Zach J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mechanically treated and untreated zinc tailing waste as cement substitute in concrete production: an experimental and statistical analysis.
    Agrawal Y; Gupta T; Chaudhary S
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28598-28623. PubMed ID: 34988803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.
    Erdem S; Blankson MA
    J Hazard Mater; 2014 Jan; 264():403-10. PubMed ID: 24316812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.
    Acharya PK; Patro SK
    Waste Manag Res; 2016 Aug; 34(8):764-74. PubMed ID: 27357563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.