These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34639888)

  • 1. Enhanced Elevated-Temperature Strength and Creep Resistance of Dispersion-Strengthened Al-Mg-Si-Mn AA6082 Alloys through Modified Processing Route.
    Rakhmonov J; Liu K; Rometsch P; Parson N; Chen XG
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Mechanical Response of Al-Mg-Si 6082 Structural Alloys during High-Temperature Exposure through Dispersoid Strengthening.
    Rakhmonov J; Liu K; Rometsch P; Parson N; Chen XG
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Elevated-Temperature Strength and Creep Resistance during Multi-Step Heat Treatments in Al-Mn-Mg Alloy.
    Wang GS; Liu K; Wang SL
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29986489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersoids in Al-Mg-Si Alloy AA 6086 Modified by Sc and Y.
    Zupanič F; Žist S; Albu M; Letofsky-Papst I; Burja J; Vončina M; Bončina T
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Thermo-Mechanical Fatigue Resistance of Al-Si-Cu 319 Alloys by Microalloying with Mo.
    Liu K; Wang S; Hu P; Pan L; Chen XG
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review.
    Arriaga-Benitez RI; Pekguleryuz M
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Zr Microalloying on the Microstructure and Room-/High-Temperature Mechanical Properties of an Al-Cu-Mn-Fe Alloy.
    Liu J; Hu J; Li M; Liu G; Wu Y; Gao T; Liu S; Liu X
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitation Kinetics of Water-Cooled Copper Mold Al-Mg-Si(-Mn, Zr) Alloy during Aging.
    Shen H; Shi J; Zhou Y; Wang X; Yao G
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.
    Yoo HS; Kim YH; Lee SH; Son HT
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6249-6252. PubMed ID: 29677775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Cr Addition on the Microstructure and Mechanical Properties of an Al-Si-Cu-Mg Alloy.
    Sun F; Wen X; Sun S; Lu Y; Xiao W; Ma C
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy.
    Farkoosh AR; Dunand DC; Seidman DN
    Acta Mater; 2021 Oct; 219():. PubMed ID: 36247868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation.
    Farkoosh AR; Dunand DC; Seidman DN
    Acta Mater; 2022 Nov; 240():. PubMed ID: 36246780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Mn/Ag Ratio on Microstructure and Mechanical Properties of Heat-Resistant Al-Cu Alloys.
    Fu X; Yang H; Wang H; Huang C; Chen Y; Huang Q; Li A; Pan L
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Performance and Precipitation Behavior in Al-Si-Cu-Mg Cast Alloys: Effect of Prolonged Thermal Exposure.
    Abdelaziz MH; Samuel AM; Doty HW; Songmene V; Samuel FH
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural Evolution in a 6060 Extrudable Al-Alloy: Integrated Modeling and Experimental Validation.
    Aristeidakis JS; Haidemenopoulos GN; Bjørge R; Marioara CD; Kamoutsi H; Giarmas E; Rafailidis N
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182.
    Li J; Yang X; Xiang S; Zhang Y; Shi J; Qiu Y; Sanders RE
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Solid Solution and Aging Treatment on the Mechanical Properties and Microstructure of a Novel Al-Mg-Si Alloy.
    Chen Y; Wei W; Zhao Y; Shi W; Zhou X; Rong L; Wen S; Wu X; Gao K; Huang H; Nie Z
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring microstructure of Mg-Zn-Y alloys with quasicrystal and related phases for high mechanical strength.
    Singh A
    Sci Technol Adv Mater; 2014 Aug; 15(4):044803. PubMed ID: 27877701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the Mechanical Properties in Al⁻Si⁻Cu⁻Fe⁻Mg Alloys with Various Processing Parameters.
    Ahn SS; Pathan S; Koo JM; Baeg CH; Jeong CU; Son HT; Kim YH; Lee KH; Hong SJ
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30388757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Mechanical Properties of Al-Si-Fe-Cu-Mn-
    Yoo HS; Kim YH; Lee SH; Son HT
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2314-2318. PubMed ID: 30486990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.