These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 34639964)
1. Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides. Chowdhury S; Manara D; Dieste-Blanco O; Robba D; Gonçalves AP Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639964 [TBL] [Abstract][Full Text] [Related]
2. Uranium Carbide Fibers with Nano-Grains as Starting Materials for ISOL Targets. Chowdhury S; Maria L; Cruz A; Manara D; Dieste-Blanco O; Stora T; Gonçalves AP Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33316919 [TBL] [Abstract][Full Text] [Related]
3. Unconventional Pathways to Carbide Phase Synthesis via Thermal Decomposition of UI Ferrier MG; Childs BC; Silva CM; Greenough MM; Moore EE; Swift AJ; Di Pietro SA; Martin AA; Jeffries JR; Holliday KS Inorg Chem; 2022 Nov; 61(44):17579-17589. PubMed ID: 36269886 [TBL] [Abstract][Full Text] [Related]
4. Rapid heating induced ultrahigh stability of nanograined copper. Li XY; Zhou X; Lu K Sci Adv; 2020 Apr; 6(17):eaaz8003. PubMed ID: 32494653 [TBL] [Abstract][Full Text] [Related]
5. Defect-induced strong localization of uranium dicarbide on the graphene surface. Han J; Dai X; Gao Y; Meng Y; Wang Z Phys Chem Chem Phys; 2014 Nov; 16(41):22784-90. PubMed ID: 25238613 [TBL] [Abstract][Full Text] [Related]
6. Enhanced thermal stability of nanograined metals below a critical grain size. Zhou X; Li XY; Lu K Science; 2018 May; 360(6388):526-530. PubMed ID: 29724953 [TBL] [Abstract][Full Text] [Related]
7. Study on the Hydrogen Embrittlement of Nanograined Materials with Different Grain Sizes by Atomistic Simulation. Li J; Wu Z; Wang F; Zhang L; Zhou C; Lu C; Teng L; Lin Q Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806713 [TBL] [Abstract][Full Text] [Related]
8. Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets. Biasetto L; Corradetti S; Carturan S; Eloirdi R; Amador-Celdran P; Staicu D; Blanco OD; Andrighetto A Sci Rep; 2018 May; 8(1):8272. PubMed ID: 29844395 [TBL] [Abstract][Full Text] [Related]
9. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser. Hwang YS; Levitas VI Phys Chem Chem Phys; 2015 Dec; 17(47):31758-68. PubMed ID: 26561920 [TBL] [Abstract][Full Text] [Related]
10. In-situ SEM observation of grain growth in the austenitic region of carbon steel using thermal etching. Heard R; Dragnevski KI; Siviour CR J Microsc; 2020 Sep; 279(3):249-255. PubMed ID: 32259284 [TBL] [Abstract][Full Text] [Related]
11. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel. Mieszczynski C; Kuri G; Bertsch J; Martin M; Borca CN; Delafoy Ch; Simoni E J Phys Condens Matter; 2014 Sep; 26(35):355009. PubMed ID: 25109302 [TBL] [Abstract][Full Text] [Related]
12. The grain size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Zhang H; Yan H; Ning H; Reece MJ; Eriksson M; Shen Z; Kan Y; Wang P Nanotechnology; 2009 Sep; 20(38):385708. PubMed ID: 19713573 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of Micro- and Nanograined UO De Bona E; Popa K; Walter O; Cologna M; Hennig C; Scheinost AC; Prieur D Inorg Chem; 2022 Jan; 61(4):1843-1850. PubMed ID: 35044161 [TBL] [Abstract][Full Text] [Related]
14. In Situ Transmission Electron Microscopy for Ultrahigh Temperature Mechanical Testing of ZrO Grosso RL; Muccillo ENS; Muche DNF; Jawaharram GS; Barr CM; Monterrosa AM; Castro RHR; Hattar K; Dillon SJ Nano Lett; 2020 Feb; 20(2):1041-1046. PubMed ID: 31928016 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of pure and doped (Na, Ca, Sr) nanograined LaMnO3 magnetoresistive ceramics. Maglia F; Malavasi L; Camurlu HE; Tacca A; Chiodelli G; Spinolo G; Mozzati MC; Anselmi-Tamburini U; Munir ZA J Nanosci Nanotechnol; 2008 Feb; 8(2):846-53. PubMed ID: 18464417 [TBL] [Abstract][Full Text] [Related]
16. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident. Manara D; Soldi L; Mastromarino S; Boboridis K; Robba D; Vlahovic L; Konings R J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286382 [TBL] [Abstract][Full Text] [Related]
18. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum. Xu Y; Dibble CJ; Petrik NG; Smith RS; Joly AG; Tonkyn RG; Kay BD; Kimmel GA J Chem Phys; 2016 Apr; 144(16):164201. PubMed ID: 27131543 [TBL] [Abstract][Full Text] [Related]
19. A new thermo-desorption laser-heating setup for studying noble gas diffusion and release from materials at high temperatures. Horlait D; Faure R; Thomas BA; Devert N; Amany ML; Carlot G; Gilabert É Rev Sci Instrum; 2021 Dec; 92(12):124102. PubMed ID: 34972464 [TBL] [Abstract][Full Text] [Related]
20. Experimental Investigation on the Mass Diffusion Behaviors of Calcium Oxide and Carbon in the Solid-State Synthesis of Calcium Carbide by Microwave Heating. Li M; Chen S; Dai H; Zhao H; Jiang B Molecules; 2021 Apr; 26(9):. PubMed ID: 33924926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]