These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34640013)
1. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations. Liu S; Lyu M; Wang C Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640013 [TBL] [Abstract][Full Text] [Related]
2. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations. Liu S; Lyu M; Yang C; Jiang M; Wang C Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984337 [TBL] [Abstract][Full Text] [Related]
3. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model. Pan D; Wang C; Wang TC; Yao Y ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792 [TBL] [Abstract][Full Text] [Related]
4. The mechanical response and microscopic deformation mechanism of graphene foams tuned by long carbon nanotubes and short crosslinkers. Wang S; Yang T; Wang C; Liang L Phys Chem Chem Phys; 2022 Dec; 25(1):192-202. PubMed ID: 36484421 [TBL] [Abstract][Full Text] [Related]
5. Conductivity Maximum in 3D Graphene Foams. Liu F; Wang C; Tang Q Small; 2018 Aug; 14(32):e1801458. PubMed ID: 30015367 [TBL] [Abstract][Full Text] [Related]
6. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams. Shen Z; Ye H; Zhou C; Kröger M; Li Y Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421 [TBL] [Abstract][Full Text] [Related]
7. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression. Wang S; Wang C; Khan MB; Chen S Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029 [TBL] [Abstract][Full Text] [Related]
8. The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression. Khan MB; Wang C; Wang S; Fang D; Chen S Nanotechnology; 2021 Mar; 32(11):115701. PubMed ID: 33361558 [TBL] [Abstract][Full Text] [Related]
9. Strain Hardening in Graphene Foams under Shear. Yang T; Wang C; Wu Z ACS Omega; 2021 Sep; 6(35):22780-22790. PubMed ID: 34514249 [TBL] [Abstract][Full Text] [Related]
16. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition. Davami K; Jiang Y; Cortes J; Lin C; Shaygan M; Turner KT; Bargatin I Nanotechnology; 2016 Apr; 27(15):155701. PubMed ID: 26926386 [TBL] [Abstract][Full Text] [Related]
17. Frictional Properties of Nanojunctions Including Atomically Thin Sheets. Ouyang W; Ma M; Zheng Q; Urbakh M Nano Lett; 2016 Mar; 16(3):1878-83. PubMed ID: 26829154 [TBL] [Abstract][Full Text] [Related]
18. The Origin of the Sheet Size Predicament in Graphene Macroscopic Papers. Lin J; Li P; Liu Y; Wang Z; Wang Y; Ming X; Gao C; Xu Z ACS Nano; 2021 Mar; 15(3):4824-4832. PubMed ID: 33682415 [TBL] [Abstract][Full Text] [Related]
19. Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation. Wei X; Meng Z; Ruiz L; Xia W; Lee C; Kysar JW; Hone JC; Keten S; Espinosa HD ACS Nano; 2016 Feb; 10(2):1820-8. PubMed ID: 26783825 [TBL] [Abstract][Full Text] [Related]
20. Solution Evaporation-Driven Crumpling and Assembling of Large-Accessible-Space, High-Mechanical-Strength Graphene/Carbon Nanotube Composite Nanoparticles. Liu Q; Xu B ACS Appl Mater Interfaces; 2020 Sep; 12(38):43058-43064. PubMed ID: 32840347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]